

FRENIC

Maximum Engineering for Global Advantage

FUJI INVERTERS

With the flexibility and functionality to support a wide range of applications on all types of mechanical equipment, the FRENIC-MEGA takes core capability, responsiveness, environmental awareness, and easy maintenance to the next level.

CÔNG TY TNHH THƯƠNG MẠI KỸ THUẬT ĐIỆN CITY

Nhà phân phối thiết bị điện công nghiệp hàng đầu Việt Nam

TE TAIWAN METERS

LIÊN HỆ VỚI CHÚNG TÔI

Địa chỉ: 125 Phú Châu, KP1, P. Tam Bình, TP. Thủ Đức, TP. HCM Hotline: 0909 808 905 (Zalo) Email: minh.diencity@gmail.com Website: diencity.com

The performance, reaching the peak in the industry

FRENIC-MEGA is a high performance, multifunctional inverter Fuji Electric has developed by gathering the best of its technologies. With our own state-of-the-art technology, the control performance has evolved to a new dimension.

FRENIC-MEGA has been developed to use with a variety of equipment by improving the basic performance, meeting the requirements for various applications, achieving lower maintenance, and enhancing the resistance to the environmental impacts.

FRENIC-MEGA, the inverter with the highest performance in the industry, is about to redefine the common sense of general-purpose inverters. Now, it is ready to answer your needs.

FUJI INVERTERS

With the flexibility and functionality to support a wide range of applications on all types of mechanical equipment, the FRENIC-MEGA takes core capability, responsiveness, environmental awareness, and easy maintenance to the next level.

FRENIC-MEGA

High Performance Multifunctional Inverters NIC-NEGA Series

Maximum Engineering for Global Advantage

Improved control performance

- **1**Applicable control methods: PG vector control, sensorless vector control, dynamic torque vector control, and V/f control
- 2 Improved performance of current response and speed response (vector control)
- **3** Improved durability in overload operation HD (High duty) spec: 200% for 3 sec / 150% for 1 min LD (Low duty) spec: 120% for 1 min

Lower maintainance

• Keypad with a USB connector

2 Maintenance warning signal output

3 Use of parts with a longer life cycle (Designed life: 10 years)

(Main circuit capacitor, electrolytic capacitor, cooling fan)

Various applications

1Various functions that accommodate a wide range of applications

Example: Breakage detection by braking transistor, improved reliability of brake signals, and operation at a specified ratio

2Expanded capacity of the brake circuit built-in model

(Standard-equipped for 22kW or smaller models)

3 Full network support

Consideration for environment

1 Great model variation meeting customers' needs

Basic type, EMC filter built-in type, and the model compliant with the guideline supervised by the Ministry of Land, Infrastructure and Transport (available soon)

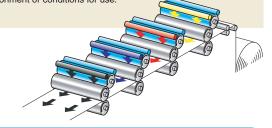
2Compliance with RoHS Directives (planned)

3 Improved resistance to the environmental impact

Use the contents of this catalog only for selecting product types and models. When using a product, read the Instruction Manual beforehand to use the product correctly.
 Products introduced in this catalog have not been designed or manufactured for such applications in a system or equipment that will affect human bodies or lives. Customers, who want to use the products introduced in this catalog for special systems or devices such as for atomic-energy control, aerospace use, medical use, and traffic control, are requested to consult the Fuji's Sales Division. Customers are requested to prepare safety measures when they apply the products introduced in this catalog to such systems or facilities that will affect human lives or cause severe damage to property if the products become faulty.

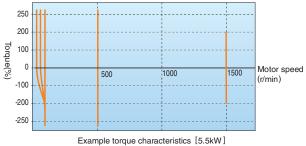
/ariations

Best vector control for the general-purpose inverter in the class


Ideal for highly accurate control such as positioning

PG vector control

Effective in providing highly accurate control for applications such as offset printing


Speed control range: 1:1500 Speed response: 100Hz Speed control accuracy: ±0.01% Current response: 500Hz

- Torque accuracy: ±10%
- * The option card is required separately. (Available soon) * The above specifications may vary depending on the
- environment or conditions for use.

Fuji's original dynamic torgue vector control has further evolved.

Besides the dynamic torque vector control, the inverter is equipped with the motor constant tuning for compensating even a voltage error of the main circuit devices and the magnetic flux observer of a new system. This realizes a high starting torque of 200% even at a low-speed rotation of 0.3Hz.

Improved durability in overload operation

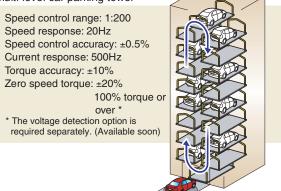
The inverter performs short-time acceleration and deceleration with the maximum capacity by achieving better time rating of the overload ratings compared with our previous models. This improves the operation efficiency of the equipment such as cutting machine or conveyance machine

Overload durability: 200% for 3 sec and 150% for 1 min.

The standard model is available in two specifications concerning the operation load.

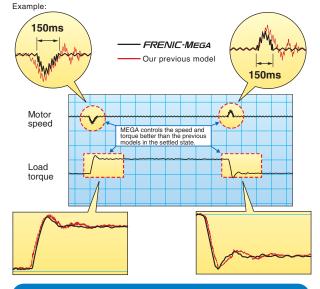
Classification	Overload	Major use
HD (High duty) spec	200% for 3 sec, 150% for 1 min	Operation under heavy load
LD (Low duty) spec	120% for 1 min	Operation under light load

Expanded capacity for the brake circuit built-in models


A brake circuit is built in the 22kW or smaller models as a standard function. These inverters are applicable to the machine that uses regenerative load such as a vertical conveyance machine.

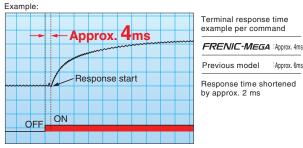
(The 7.5kW or smaller models also incorporate a braking resistor.)

* Since the capacity has been further expanded, 30kW to 55 kW models in 200V series and 30kW to 110kW models in 400V series can be manufactured on request.


Maximizing the performance of a general-purpose motor

Sensorless vector control (available soon) Useful for the application that requires a high starting torque, such as the gondola type multi-level car parking tower

Improved reaction to the fluctuation of impact load


When a remarkable load fluctuation occurs, the inverter provides the torque response in the class-top level. It controls the flux to minimize the fluctuation in the motor speed while suppressing the vibration. This function is best suited for the equipment that requires stable speed such as a cutting machine.

Quicker response to the operation commands

The terminal response to the operation commands has had an established reputation. FRENIC-MEGA has further shortened this response time, achieving the industry-top response time. This function is effective in shortening the tact time per cycle and effective for use in the process including frequent repetitions.

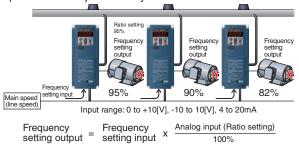
: Approx. 6ms

Accommodating various applications

Convenient function for operations at the specified speed

The pulse train input function is equipped as a standard function.

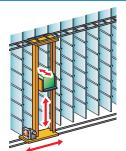
It is possible to issue the speed command with the pulse train input (single-phase pulse and a sign of command value) from the pulse generator, etc.


(Maximum pulse input: 100kpps)

This function is useful for controlling more than one inverter.

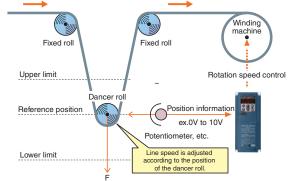
Ratio operation

The ratio operation is the function particularly convenient for adjusting two or more conveyance systems. The ratio of the main axis speed to the two or more trailing axes can be set as a frequency command. On the machine that handles load variation such as a conveyance machine, the conveyance speed can be adjusted easily.

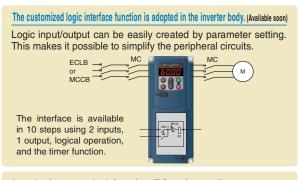

Thorough protection of the braking circuit

The inverter protects the braking resistor by monitoring the braking transistor operation. The inverter outputs an exclusive signal on detection of the braking transistor abnormality. A circuit for shutting off the input power supply is provided outside of the inverter. When this signal is output, the power is shut off; thus protecting the braking circuit.

MEGA World Keeps Expanding PG option card for positioning control (available soon) This control function is best suited for the application that requires highly accurate positioning such as that of the conveyance machine. By combined use of the position control device (APR) and PG vector control, the position control accuracy has been remarkably improved. Shortened positioning time by this function will be helpful to reduce the tact time of a cycle. Example: Fixed length marking system Object to be marked Belt conveyo Moving direction 60 0 \odot 0 0 Position control section Start point Reference position / Target stop point Position detection sensor [LS]


Optimum function for preventing an object from slipping down

The reliability of the brake signal was increased for uses such as vertical conveyance. Conventionally, the current value and the frequency have been monitored when the brake signal is output. By adding a torque value to these two values, the brake timing can be adjusted more easily.


Dancer control function optimum for winding control

The PID value, calculated by comparing the target value and the feedback value, is added to or subtracted from the reference speed. Since the PID calculator gain (in proportional range) can be set to a low value, the inverter can be applied to the automatic control system that requires quick response such as a speed controller.

More functions are available to meet various requirements

(1) Analog input (4 to 20mA) through 2 terminals with polarity (2) Low liquid level stop function (Pressurized operation is possible before low liquid level stop.) (3) Nonlinear V/f pattern at 3 points (4) Dummy failure output function (5) Selection of up to the 4th motor (6) S-shape accel./decel. range setting (7) Detecting disconnection of the PID feedback (8) Output frequency: 500Hz

Introducing servo lock function (PG option card). (Available soon) This function is effective in adjusting the stop timing or the braking torque when the equipment such as a conveyance machine is stopped by positioning of the motor. This function is helpful when torque is applied externally or holding torque is required during the stop time. The tact time per cycle will be reduced by shortened deceleration time.

Wide model variation meeting the customer needs

Wide model variation

1. Basic type

Suitable for the equipment that uses a peripheral device to suppress noise or harmonics.

- 2. EMC filter built-in type (available soon) This type is designed in compliance with European EMC Directives (2nd Env), and reduces noise generation. Objective standard: European EMC Directives category C3 (2nd Env) 'EN61800-3-2004'
 - * The EMC filter can be switched between effective and ineffective. * Use of EMC filter will increase the leak current.
- 3. Inverter type designed to the guideline specified by the Ministry of Land, Infrastructure and Transport (available soon)

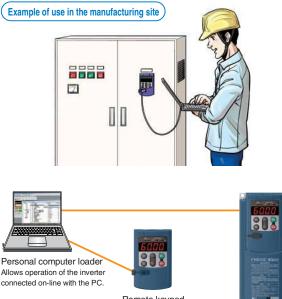
The inverter employs a DC reactor and complies with "Standard Specifications for Public Building Construction" supervised by the Ministry of Land, Infrastructure and Transport. This inverter suppresses harmonics and noise.

* The inverter incorporates the DC reactor, and the zero-phase reactor is supplied together with the inverter to meet the inverter installation standards stipulated in the Standard Specifications for Public Building Construction (Electric Equipment) 2004 version published under the supervision by Government Buildings Department in Minister/Secretariat of Land, Infrastructure and Transport.

Supports for simple maintenance

The built-in USB port allows use of a personal computer loader for easy information control!

Improved working efficiency in the manufacturing site


A variety of data about the inverter body can be saved in the keypad memory, allowing you to check the information in any place.

Features

- 1. The keypad can be directly connected to the computer through a commercial USB cable (Mini B) without using a converter. The computer can be connected on-line with the inverter.
- 2. With the personal computer loader, the inverter can support the following functions (1) to (5).
 - Editing, comparing, and copying the function code data
 Real-time operation monitor
 - (3) Trouble history (indicating the latest four troubles)
 - (4) Maintenance information
 - (5) Historical trace (available soon)

- Data can be transferred from the USB port of the keypad directly to the computer (personal computer loader) in the manufacturing site.
- Periodical collection of life information can be carried out efficiently.
- •The real-time tracing function permits the operator to check the equipment for abnormality.

Remote keypad Information can be written in the keypad memory.

RS-485 terminal enabling

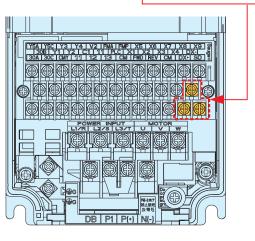
multi-drop connection

Network building

Connection with the network with the option card (available soon)

SX bus interface card

Profibus-DP


CAN-BUS Ethernet/IP CC-Link etc.

Advanced network function

RS-485 communication is possible as a standard function (terminal base).

Besides the port (RJ-45 connector) shared with the keypad, RS-485 terminal is provided as a standard function. Since the interface is connected through terminals, multi-drop connection can be made with ease.

Prolonged service life and improved life judgment function

Designed life 10 years

For the various consumable parts inside the inverter, their designed lives have been extended to 10 years, which also extended the equipment maintenance cycles.

Consumable part	Designed life
Main circuit capacitor	10 years
Electrolytic capacitor on PCB	10 years
Cooling fan	10 years

The part life is estimated on condition that the inverter is used at: an ambient air temperature of 40°C and under the load

rate of 100% (HD spec) or 80% (LD spec).

* The designed lives are the calculated values and not the guaranteed ones.

Full support of life warnings

The inverter is loaded with the functions for facilitating the maintenance of the equipment

Item	Purpose
Cumulative inverter run time (h)	Displays the total run time of the inverter.
Number of inverter startups	Displays the number of times the inverter has started the equipment. Example of use: This data indicates the timing to replace the equipment parts (such as a timing belt) operating under the normal load.
Equipment maintenance warning Cumulative run time (h) Number of startups	By inputting the signal for operation with the commercial power supply, the time outside the inverter operation time can also be measured. This makes it possible to manage the total run time of the equipment and the number of startups. Such data is usable for preparing the maintenance schedule.
Display of inverter life warning	The displayed contents include: main circuit capacitor capacity, total run time of the cooling fan (with ON/OFF compensation), total run time of the electrolytic capacitor on the printed circuit board, and total run time of the inverter.

Consideration for environment

Enhanced resistance to the environmental impacts

Resistance to the environmental impact has been enhanced compared with the conventional inverter.

- (1) Enhanced durability of the cooling fan operated under the environmental impact
- (2) Adoption of copper bars plated with nickel or tin

In MEGA, resistance to the environmental impact has been increased compared with the conventional model. However, examine the use of the inverter carefully according to the environment in the following cases:

- a. Environment is subject to sulfide gas (at tire manufacturer, paper manufacturer, sewage disposer, or part of the process in textile industry).
- b. Environment is subject to conductive dust or foreign matters (in metalworking, operation using extruding machine or printing machine, waste disposal).
- c. Others: The inverter is used in the environment of which specification exceeds the specified range.

If you are examining use of the inverter under the above conditions, consult with us regarding the models with enhanced durability.

Compliance with RoHS Directives

MEGA complies with European regulations that limit the use of specific hazardous substances (RoHS) as a standard. This inverter is environment-friendly as the use of the following six hazardous substances is restricted. <Six hazardous substances>

Lead, mercury, cadmium, hexavalent chromium,

polybrominated biphenyl (PBB), and polybrominated biphenyl ether (PBDE)

* Except the parts of some inverter models

<About RoHS>

EC Directive (CE marking)

The Directive 2002/95/EC, promulgated by the European Parliament and European Council, limits the use of specific hazardous substances included in electrical and electronic devices

UL standard (cUL certified)

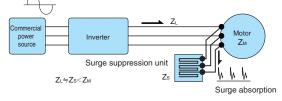
Global compatibility

Application to the world standards pending

Wide voltage range

Applicable to 240V and 480V power supplies as standard

Protection against micro surge (optional)


Surge suppression unit (optional)

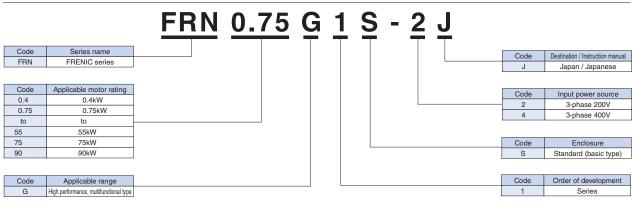
If the motor drive cable is long, a very thin surge voltage (micro surge) is generated at the motor connection ends. This surge voltage causes deterioration of the motor, dielectric breakdown, or increase in noise. The surge suppression unit suppresses this surge voltage.

- (1)The unit significantly suppresses the surge voltage when simply connected with the motor.
- (2)Since no additional work is required, it can be easily mounted on the existing equipment.
- (3)The unit is applicable to the motors regardless of their capacity. (However, consult us for application to the motor with a capacity of 75kW or over.)
- (4)The unit requires no power source and no maintenance.
- (5)Two types are available; One for 50m cable and the other for 100m cable.
- (6)Compliant with environmental standard and safety standard (Compliant with RoHS Directives, and application to UL standard pending).

Surge suppression unit structure

Model Variations

Model list	HD : High Duty spec 200% LD : Low Duty spec 120%			
	Basic type			
Standard applied motor	3-phase 200 V series		3-phase 400 V series	
(kW)	HD spec (150%)	LD spec (120%)	HD spec (150%)	LD spec (120%)
0.4	FRN0.4G1S-2J		FRN0.4G1S-4J	
0.75	FRN0.75G1S-2J		FRN0.75G1S-4J	
1.5	FRN1.5G1S-2J		FRN1.5G1S-4J	
2.2	FRN2.2G1S-2J		FRN2.2G1S-4J	
3.7	FRN3.7G1S-2J		FRN3.7G1S-4J	
5.5	FRN5.5G1S-2J		FRN5.5G1S-4J	
7.5	FRN7.5G1S-2J	FRN5.5G1S-2J	FRN7.5G1S-4J	FRN5.5G1S-4J
11	FRN11G1S-2J	FRN7.5G1S-2J	FRN11G1S-4J	FRN7.5G1S-4J
15	FRN15G1S-2J	FRN11G1S-2J	FRN15G1S-4J	FRN11G1S-4J
18.5	FRN18.5G1S-2J	FRN15G1S-2J		FRN15G1S-4J
22	FRN22G1S-2J	FRN18.5G1S-2J	FRN22G1S-4J	FRN18.5G1S-4J
30	FRN30G1S-2J	FRN22G1S-2J	FRN30G1S-4J	FRN22G1S-4J
37	FRN37G1S-2J	FRN30G1S-2J	- FRN37G1S-4J	FRN30G1S-4J
45	FRN45G1S-2J	FRN37G1S-2J	FRN45G1S-4J	FRN37G1S-4J
55	FRN55G1S-2J	FRN45G1S-2J	FRN55G1S-4J	FRN45G1S-4J
75	FRN75G1S-2J	FRN55G1S-2J	FRN75G1S-4J	FRN55G1S-4J
90	FRN90G1S-2J	FRN75G1S-2J	FRN90G1S-4J	FRN75G1S-4J
(110))	FRN90G1S-2J		FRN90G1S-4J
132)			FRN110G1S-4J
160)		FRN160G1S-4J	FRN132G1S-4J
200)			FRN160G1S-4J
220)			FRN200G1S-4J
280)			FRN220G1S-4J
•)		•	•
•			•	+
•			•	•
•			•	•
630)		FRN630G1S-4J	FRN500G1S-4J
710)			FRN630G1S-4J


[Available soon] The EMC filter built-in type and the zero-phase reactor/DC reactor built-in type that complies with the guideline supervised by the Ministry of Land, Infrastructure and Transport will be added to the lineups.

*When HD spec of FRN55G1S-2J or FRN55G1S-4J is ordered, no DC reactor is supplied as a standard device. But, when LD spec is ordered, the DC reactor is supplied as a standard device.

How to read the inverter model

User's Manual thoroughly for proper operations.

Caution

Characteristics

Available soon

ſ

The contents of this catalog are provided to help you select the product model that is best for you. Before the actual use, be sure to read the

Keypad Operations

Keypad switches and functions

: Operation information (output

frequency, output current, output voltage, etc.) When a minor

trouble occurs, the monitor shows a minor trouble warning $L - \Pi L$

Menu, function code, function code data, etc.

: Alarm code indicating the cause

: Press the key to switch the

: Press the key to switch the run

: After solving the problem, press

: Press the key to switch the operation status information to be

to Running mode.

alarm information.

code or establish data.

this key to turn off the alarm and switch to the run mode.

displayed (output frequency, output current and output voltage).

When a minor trouble warning is

displayed, holding down this key

resets the alarm and switches back

: Press the key to display the function

: Press the key to display the detailed

that triggered the protection

The following data is displayed in each operation mode.

function.

program mode.

mode

Program/Reset key

Used to change the operation mode.

Function/Data key

Use this key for the following operations.

6000 LED monitor 4-digit, 7-segment LED monitor

Run mode

Program mode

Alarm mode

Run mode

Program mode

Alarm mode

Run mode

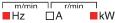
Program mode

Alarm mode

Keypad control LED

x10 LED

This LED is on when the weekey on the keypad is enabled and can issue an operation command. In the program mode or alarm mode, however, no operation is possible even if this LED is lit.


USB port

Enables connection of the inverter with the PC using USB cable. The inverter side connector is of the mini B-type

If the data to be displayed exceeds 9999, the x10 LED lights, indicating that the actual data is ten times the displayed data.

Example: If the data is "12,345," the LED monitor displays " the actual value is $1,234 \times 10 = 12,340$.

Unit LED (3 places)

Combination of the three LEDs shows the unit used when the operating condition is monitored in the run mode.

PRG. MODE

When the program is selected, the right and left LEDs are on.eft LEDs are on. kW

Hz ПА

RUN LED

This LED is on during operation with FWD/REV signal or with communication key. operation command.

💵 RUN key

Starts the motor operation.

STOP key

Stops the motor operation.

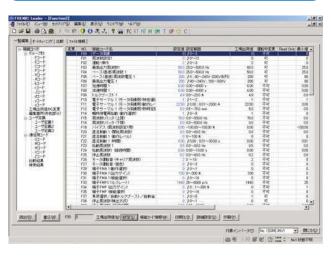
Used to select the setting items displayed on the LED monitor or change the function mode data

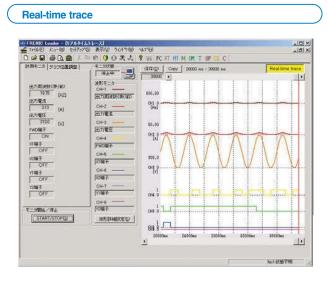
Monitor display and key operation The keypad modes are classified into the following 3 modes.

	Operatio	on mode	Programm	ning mode	Runnin	g mode	
Мо	nitor, keys		STOP	RUN	STOP	RUN	Alarm mode
	8.8.8.8	Function	Displays the function	code and data.	Displays the output frequency, speed, power consumption, ou	set frequency, loaded motor tput current, and output voltage.	Displays the alarm description and alarm history.
		Display	Lighting		Blinking	Lighting	Blinking/Lighting
		Function	Indicates that the proc	gram mode is selected.	Displays the units of freque power consumption, and		None
Monitor	Hz r/min m/min kW	Display	F Hz r/min ⊨ A m/min kW −	G.MODEON	display mmin mmin kW Current Hz r/min display mmin RG.MODEON	Speed display Capacity or Current indication Marking Htz Marking PRGMODE ON Marking PRGMODE ON MARKING PRG PRGMODE ON MARKING PRGMODE ON MARKING PRGMODE ON MARKING PRG PRG PRG PRG PRG PRG PRG PRG PRG PR	OFF
		Function		Operation select	ion (keypad operation/ter	minal operation) is displa	yed.
		Display			Lit in keypad operation	on mode	
		Function	Indicates absence of operation commands	Indicates presence of operation commands.	Indicates absence of operation commands.	Indicates presence of operation commands.	Indicates that the operation is trip-stopped.
		Display	RUN unlit	RUN lit	RUN unlit	RUN lit	If an alarm occurs during operation, the lamp is unlit during keypad operation and lit during terminal block operation.
	PRG		Switches to running n	node	Switches to programming	mode.	Releases the trip and
	PRG RESET	Function	Digit shift (cursor mov	rement) in data setting			switches to stop mode or running mode.
/s	FUNC	Function	Determines the functi updates data.	on code, stores and	Switches the LED monitor	r display.	Displays the operation information.
Keys	$\bigcirc \bigcirc$	Function	Increases/decreases and data.	the function code	Increases/decreases the f and other settings.	requency, motor speed	Displays the alarm history.
	RUN	Function	Invalid		Starts running (switches to running mode (RUN)).	Invalid	Invalid
	STOP	Function	Invalid	Deceleration stop (switches to programming mode (STOP)).	Invalid	Deceleration stop (switches to running mode (STOP)).	Invalid

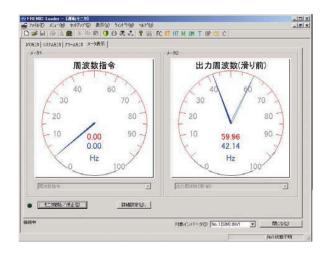
Inverter Support Loader

Full-fledged maintenance with the FRENIC loader


Editing, comparing and copying the function code data
 Operation monitor, real-time historical trace, trouble monitor, and multi-monitor
 Test run, motor auto tuning


Operation of Windows2000 and XP is guaranteed.

The real-time trace function monitors the inverter operating conditions with the waveforms in the multichannel graph format, and the results can be stored in a data file. The stored data can be used for motion analysis etc.


* The loader software can be downloaded for free from FUJI's website.

Function code list editing

Operation monitor

- | D| × - | Ø| × 6 0 0 X 1 (* L] . -12 HIM ON T OP ディジタル入力信号割付 周波鼓锋争 -71 20 - 1 Refi 今日和主教 建积 1 THE: う項目の選挙 1.12月1日日日日 peri 职业财命令 Den X4 トルク演算順 STOP 建筑桃出 36
 次7
 自己採用違称[040]

 第7-5/福希[03]
 第7-5/福希[03]

 第8
 第5-40円か[05]

 第4
 第5-40円か[05]

 第4
 第4

 第4
 第4

 第4
 第5-40円か[05]

 第4
 第4

 第4
 第4

 第4
 第4

 第5
 第5

 第6
 第6

 第6
 第6

 第7
 第6

 第6
 第6

 第6
 第6

 第7
 第6

 第6
 第6

 第7
 第6

 第6
 第6

 第6
 第6

 第7
 第6

 第7
 第6

 第7
 第7

 第7
 第6

 第7
 第6

 第7
 第7

 第7
 <td 間波数・運転指令切換 [3:間波数指令-ローダ: 運転指令-ロー pen REV Open 最新のインバータ価額に更新 更新 TVNI (MIZ)F ON 908-715-1814 1903 + No1 状態不明

Test run screen

Standard Specifications (Basic type)

Three-phase 200V series

HD (High Duty) spec for heavy load

	ltem									Specifi	cations	;							
Тур	e (FRNG1S-2J)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
Non	ninal applied motor [kW] (*	1)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
s	Rated capacity [kVA] (*2)		1.1	1.9	3.0	4.2	6.8	10	14	18	24	28	34	45	55	68	81	107	131
ting	Rated voltage [V] (*3)		Three	-phase 2	200 to 24	40V (wit	h AVR)							Three	-phase 2	200 to 23	30V (wit	h AVR)	
Output ratings	Rated Current [A] (*4)		3	5	8	11	18	27	37	49	63	76	90	119	146	180	215	283	346
rtbr	Overload capability		150%	for 1 min	, 200%	for 3.0s													
õ	Rated frequency [Hz]		50, 60	Hz															
	Main circuit power Phases, voltage, frequenc	ÿ	Three	-phase 2	200 to 24	40V, 50/6	60Hz								e-phase e-phase				
sốu	Auxiliary control power in Phases, voltage, frequence			_	Single	-phase	200 to 2	40V, 50/	60Hz					Single	e-phase	200 to 2	30V, 50	60Hz	
Input ratings	Auxiliary power input for fa Phases, voltage, frequend			_												e-phase e-phase			
1	Voltage, frequency variati	ons	Voltag	e:+10 to	-15% (Voltage	unbalan	ce:2% o	r less (*6	6)) Frequ	iency:+8	5 to -5%							
	Rated current [A] (*7)	with DCR	1.6	3.2	6.1	8.9	15	21.1	28.8	42.2	57.6	71.0	84.4	114	138	167	203	282	334
	nated current [A] (7)	without DCR	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80.1	97.0	112	151	185	225	270	-	-
	Required power supply capacity (*	8) with DCR	0.6	1.2	2.2	3.1	5.2	7.4	10	15	20	25	30	40	48	58	71	98	116
	Torque [%] (*9)		15	0%			100%				20	%				10 tc	15%		
	Braking transistor							Built-in				1					-		
5	Minimum connective resis	tance	10		4	-	24	16	12	8	6	4					_		
Braking	Torque [%]		180		18		180%		180%	180%	180%	180	1%						
B	Built-in braking resistance		10	0Ω		40Ω		20	DΩ										
		Braking time[s]				5s	-												
		%ED	5	3	5	3	2	3	2					_					
	DC injection braking			ng freque	ency:0.0	to 60.01	Iz, Brak	ing time	: 0.0 to 3	30.0s, Br	aking le	vel:0 to	100%					a	
	reactor (DCR) (*10)		Option			<i>(</i>												Standard a	accessory
<u> </u>	licable safety standards losure (IEC60529)			BC, C22.										1000					
	ling method			IEC6052	,	Fan co		n type (I	UL 50)					1P00 o	pen type	e, UL ope	en type		
	0			al cooling			-	0.5	7	7	0.5	0.5	10	00	00	40	40		
vvei	ght/Mass [kg]		1.8	2	2.8	3	3.2	6.5	/	/	9.5	9.5	10	26	32	42	43		

LD (Low Duty) spec for light load

	Item									Specifi	cations	;							
Тур	e (FRNG1S-2J)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
Non	ninal applied motor [kW] (*	1)	-	-	-	-	—	7.5	11	15	18.5	22	30	37	45	55	75	90	110
	Rated capacity [kVA] (*2)		-	- 1	-	-	—	11	16	20	25	30	43	55	68	81	107	131	158
sɓu	Rated voltage [V] (*3)							Three	-phase :	200 to 24	40V (wi	th AVR)		Three	-phase 2	200 to 23	30V (wit	h AVR)	
Output ratings	Rated Current [A] (*4)		-	-	-	_	_	31.8 (29)	46.2 (42)	59.4 (55)	74.8 (68)	88 (80)	115 (107)	146	180	215	283	346	415
onth	Overload capability				-			120%	for 1 min										
	Rated frequency [Hz]				-			50, 60	Hz										
	Main circuit power Phases, voltage, frequen	су.			-			Three-	phase 2	200 to 24	10V, 50/6	60Hz				200 to 2 200 to 2			
sốu	Auxiliary control power in Phases, voltage, frequent				-			Single	-phase 2	200 to 24	40V,50/6	60Hz		Single	e-phase	200 to 2	230V, 50	/60Hz	
Input ratings	Auxiliary power input for f Phases, voltage, frequent				-						-					e-phase e-phase			
<u> </u>	Voltage, frequency variati	ons			. –			Voltag	e:+10 to	-15% (\	/oltage ι	unbaland	e:2% or	less (*6	5)) Frequ	iency:+5	5 to -5%		
	Rated current [A] (*7)	with DCF	-	-	-	-	-	28.8	42.2	57.6	71.0	84.4	114	138	167	203	282	334	410
		without D	CR —	-	-	-	-	42.7	60.7	80.1	97.0	112	151	185	225	270	-	-	-
	Required power supply capacity	(*8) with DCR	-	-	-	-	-	10	15	20	25	30	40	48	58	71	98	116	143
	Torque [%] (*9)				-			70	%		1	5%				7 to	12%		
	Braking transistor				-					Built	·in					•	_		
5	Minimum connective resis	tance			_			16	12	8	6	4	4				_		l
Braking	Torque [%]							130%	120%	130%	140%	150%	130%						
Bra	Built-in braking resistance				-				Ω					-					
		Braking time (s			-			3.7s	3.4s					_					
		%ED			-			2.2	1.4					-					
	DC injection braking			-				<u> </u>	ency:0.0	0 to 60.0)Hz, Bra	king time	e: 0.0 to	30.0s, E	Braking I				
	reactor (DCR) (*10)	_		-			Optio									Standa	ard acce	ssory	
<u> </u>	licable safety standards		_		-							0//	1800-5-	1					
	losure (IEC60529)				-					closed ty	pe ULop	pen type(U	IL 50)	IP00 o	pen type	e UL ope	en type		
	ling method				-				ooling	_									
Wei	ght/Mass [kg]				-			6.5	7	7	9.5	9.5	10	26	32	42	43		

(1) Fuji's 4-pole standard motor
(2) Rate dapacity is calculated by assuming the output rated voltage as 220V for three-phase 200V series and 440V for three-phase 400V series.
(3) Output voltage cannot exceed the power supply voltage.
(4) When using the inverter in the ambient temperature of 40°C or over and with carrier frequency at 3kHz or higher, adjust the current under continuous running to be the value in () or lower by controlling the load.
(5) The auxiliary power input is used as an AC tan power input when combining the unit such as high power factor PWM converter with power regenerative function. (Generally not used.)
(6) Interphase voltage unbalance ratio[%] = (max. voltage [V] - min. voltage [V])/3-phase average voltage [V]×67(See IEC61800-3). Use the DC reactor (ACR: optional) when used with 2 to 3 % of unbalance ratio.
(7) The value is calculated on assumption that the inverter is connected with a power supply capacity of 500kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50kVA) and %X is 5%.
(9) Average braking torque obtained by use of a motor. (Varies with the efficiency of the motor.)
(10) The 55kW DC reactor (DCR) is optional with HD spec, and is provided as a standard accessory with LD spec.

Three-phase 400V series

(0.4 to 55kW) HD (High Duty) spec for heavy load

	Item								Specif	cations							
Тур	oe (FRN G1S-4J)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
Nor	minal applied motor [kW] (*1)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
s	Rated capacity [kVA] (*2)		1.1	1.9	2.8	4.1	6.8	10	14	18	24	29	34	45	57	69	85
ratings	Rated voltage [V] (*3)		Three-p	hase 38	0 to 480V	(with AV	R)										
it ra	Rated Current [A] (*4)		1.5	2.5	4	5.5	9	13.5	18.5	24.5	32	39	45	60	75	91	112
Output	Overload capability		150% f	or 1min, ź	200% for	3.0s											
Ő	Rated frequency [Hz]		50, 60H	lz													
	Main circuit power Phases, voltage, frequency		Three-p	ohase 38	0 to 480V	, 50/60Hz	:										
sốt	Auxiliary control power inpu Phases, voltage, frequency	t	-	-	Single-	ohase 38	0 to 480V	/, 50/60H	Z								
Input ratings	Auxiliary power input for far Phases, voltage, frequency		-	-													
트	Voltage, frequency variatior	IS	Voltage	:(10 to -1	5% (Volta	age unba	ance:2%	or less (6)) Frequ	ency:+5	to -5%						
	Rated current [A] (*7)	with DCR	0.85	1.6	3.0	4.5	7.5	10.6	14.4	21.1	28.8	35.5	42.2	57.0	68.5	83.2	102
		without DCR	1.7	3.1	5.9	8.2	13.0	17.3	23.2	33	43.8	52.3	60.6	77.9	94.3	114	140
	Required power supply capacity (*8)	with DCR	0.6	1.2	2.1	3.2	5.2	7.4	10	15	20	25	30	40	48	58	71
	Torque [%] (*9)		150	1%			100%				20	%			10 to	15%	
	Braking transistor		Built-in												-	-	
0	Minimum connective resista	ince	20		16		96	64	48	32	24	1			-	_	
Braking	Torque [%]		180		180		180%	180%	180%	180%	180%	180	0%				
B	Built-in braking resistance		720Ω	470Ω		160Ω		80	Ω				-	-			
		aking time[s]				5s							-	-			
		ED	5	3	5	3	2	3	2				-	-			
	DC injection braking			<u> </u>	cy:0.0 to (60.0Hz, E	Braking tir	ne: 0.0 to	30.0s, B	raking lev	/el:0 to 10	00%					
	reactor (DCR) (*10)		Optiona	-													
<u> </u>	blicable safety standards			·	lo.14 (per	0,.											
	losure (IEC60529)) closed ty	/pe, UL o Fan coo		(UL 50)						IP00 ope	en type,	UL open	type
	ight/Mass [kg]		Natural		0.0			0.5	7	7	0.5	0.5	10	00	00	00	00
vve	griviviass [kg]		1.8	2	2.8	3	3.2	6.5	7	/	9.5	9.5	10	26	26	32	36

(75 to 630kW) HD (High Duty) spec for heavy load

	Item								Specif	ications						
Тур	e (FRNG1S-4J)		75	90	110	132	160	200	220	280	315	355	400	500	630	
Nor	ninal applied motor [kW] (*1)		75	90	110	132	160	200	220	280	315	355	400	500	630	
S	Rated capacity [kVA] (*2)		114	134	160	192	231	287	316	396	445	495	563	731	891	
ratings	Rated voltage [V] (*3)		Three-p	ohase 38	0 to 480V	(with AV	R)									
ut ra	Rated Current [A] (*4)		150	176	210	253	304	377	415	520	585	650	740	960	1170	
Output	Overload capability		150% f	or 1min, :	200% for	3.0s										
Ō	Rated frequency [Hz]		50, 60H	łz												
	Main circuit power Phases, voltage, frequency				0 to 480\ 0 to 480\											
gs	Auxiliary control power input Phases, voltage, frequency		Single-	phase 38	0 to 480\	/, 50/60H	Z									
Input ratings	Auxiliary power input for fan Phases, voltage, frequency (*5	5)			30 to 440\ 30 to 480\											
<u>d</u>	Voltage, frequency variations		Voltage	e:+10 to -	15% (Volt	age unba	lance:2%	or less ((*6)) Freq	uency:+5	to -5%					
	Rated current [A] (*7)	with DCR	138	164	210	238	286	357	390	500	559	628	705	881	1115	
	hated current [A] (7)	without DCR	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Required power supply capacity [kVA] (*8)	with DCR	96	114	140	165	199	248	271	347	388	436	489	611	773	
	Torque [%] (*9)		10 to 1	5%												
p	Braking transistor		-													
Braking	Minimum connective resistanc	е	_													
Ъ.	Torque [%]															
	DC injection braking			, i	cy:0.0 to	60.0Hz, E	Braking tir	ne: 0.0 to	30.0s, B	raking lev	/el:0 to 1	00%				
	reactor (DCR) (*10)			rd access												
	licable safety standards				lo.14 (pe	0/.										
	losure (IEC60529)			,	closed ty	pe, UL op	oen type	(UL 50)								
	ling method		Fan coo	oling				1			1				1	
Wei	ght/Mass [kg]		43													

(1) Fuji's 4-pole standard motor
(2) Rated capacity is calculated by assuming the output rated voltage as 220V for three-phase 200V series and 440V for three-phase 400V series.
(3) Output voltage cannot exceed the power supply voltage.
(5) The auxiliary power input is used as an AC fan power input when combining the unit such as high power factor PWM converter with power regenerative function. (Generally not used.)
(6) Interphase voltage unbalance ratio^(%) = (max. voltage [V] - min. voltage [V])^(%)-phase average voltage [V]×67(See IEC61800-3.) Use the DC reactor (ACR: optional) when used with 2 to 3 % of unbalance ratio.
(7) The value is calculated on assumption that the inverter is connected with a power supply capacity of 500kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50kVA) and %X is 5%.
(8) Obtained when a DC reactor (DCR) is used.
(9) Average braking torque obtained by use of a motor. (Varies with the efficiency of the motor.)
(10) The 55kW DC reactor (DCR) is optional with HD spec, and is provided as a standard accessory with LD spec.

[- [

Standard Specifications (Basic type)

Three-phase 400V series

(5.5 to 55kW) LD (Low Duty) spec for light load

	Item								Specif	ications							
Тур	e (FRN G1S-4J)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
Nor	minal applied motor [kW] (*1)	-	-	-	-	-	7.5	11	15	18.5	22	30	37	45	55	75
S	Rated capacity [kVA] (*2)		—	-	—	-	-	12	17	22	28	33	45	57	69	85	114
ting	Rated voltage [V] (*3)							Three-	phase 38	0 to 480∖	' (with AV	′R)					
Output ratings	Rated Current [A] (*4)		-	-	-	-	-	16.5	23	30.5	37	45	60	75	91	112	150
Itpu	Overload capability				-				or 1min								
õ	Rated frequency [Hz]				-			50, 60ł	Ηz								
	Main circuit power Phases, voltage, frequency	,			-			Three-	phase 38	0 to 480\	/, 50/60H	Z					
sbu	Auxiliary control power inp Phases, voltage, frequency				_			Single	-phase 38	30 to 480'	V, 50/60H	lz					
Input ratings	Auxiliary power input for fa Phases, voltage, frequency				-			_									
1	Voltage, frequency variatio	ns			_			Voltag	e:+10 to ·	15% (Vo	tage unb	alance:29	% or less	(*6)) Free	quency:+	5 to -5%	
	Rated current [A] (*7)	with DCR	_	-	_	-	-	14.4	21.1	28.8	35.5	42.2	57.0	68.5	83.2	102	138
		without DCR	-	-	_	-	-	23.2	33.0	43.8	52.3	60.6	77.9	94.3	114	140	_
	Required power supply capacity (*8	with DCR	-	-	-	-	-	10	15	20	25	30	40	48	58	71	96
	Torque [%] (*9)				-			70)%			5%			7 to	12%	
	Braking transistor				_					Built					-	-	
D	Minimum connective resist	ance			_			64	48	32	24	16	16		-	_	
Braking	Torque [%]							130%	120%	130%	140%	150%	130%				
ä	Built-in braking resistance							3.7s	3.4s				_				
		raking time[s]						2.2	3.45								
		DED							1	cv:0.0 to	60.0Hz	Braking ti		30.0e F	Brakina la	vel:0 to 8	0%
	DC injection braking reactor (DCR) (*10)				_			Option	<u> </u>	cy.0.0 l0	00.0112, 1	braking ti	me. 0.0 ll	5 50.05, L	Janily le	vei.o 10 0	Standard accessory
	blicable safety standards				_					No.14 (ne	ndina). F	N61800-	5-1:2003				unalitidi u ducessury
<u> </u>	closure (IEC60529)				_						0,.	open type		IP00 or	en type	UL open	type
	bling method				-			Fan co		,	, , . <u></u>		()			on open	.,
	ight/Mass [kg]		6.5	7	7	9.5	9.5	10	26	26	32	36					

(75 to 630kW) LD (Low Duty) spec for light load

	Item								Specifi	ications						
Тур	e (FRN G1S-4J)		75	90	110	132	160	200	220	280	315	355	400	500	630	
Nor	ninal applied motor [kW] (*1)		90	110	132	160	200	220	280	355	400	450	500	630	710	
S	Rated capacity [kVA] (*2)		134	160	192	231	287	316	396	495	563	640	731	891	1044	
Output ratings	Rated voltage [V] (*3)		Three-p	hase 38	0 to 480V	(with AV	(R)									
ut ra	Rated Current [A] (*4)		176	210	253	304	377	415	520	650	740	840	960	1170	1370	
ltpr	Overload capability		120% f	or 1min												
ō	Rated frequency [Hz]		50, 60H	lz												
	Main circuit power Phases, voltage, frequency				0 to 440V 0 to 480V											
sb	Auxiliary control power input Phases, voltage, frequency		Single-	ohase 38	0 to 440\	/, 50/60Hz	z									
Input ratings	Auxiliary power input for fan Phases, voltage, frequency (*	5)			0 to 440\ 0 to 480\											
<u> </u>	Voltage, frequency variations		Voltage	:+10 to -	15% (Volt	age unba	lance:2%	or less (*6)) Freq	uency:+5	to -5%					
	Rated current [A] (*7)	with DCR	164	210	238	286	357	390	500	628	705	789	881	1115	1256	
		without DCR	-	-	-	-	-	_	-	-	-	-	-	-	-	
	Required power supply capacity [kVA] (*8)	with DCR	114	140	165	199	248	271	347	436	489	547	611	773	871	
	Torque [%] (*9)		7 to 12	%												
p	Braking transistor		-													
Braking	Minimum connective resistance	e	_													
ā	Torque [%]															
	DC injection braking				cy:0.0 to	60.0Hz, E	Braking tir	ne: 0.0 to	30.0s, B	raking lev	/el:0 to 80	0%				
<u> </u>	reactor (DCR) (*10)			d access												
	licable safety standards				lo.14 (pe	0/.	N61800-5	5-1:2003								
-	losure (IEC60529)				UL open	type										
	ling method		Fan coc	ling												
Wei	ght/Mass [kg]		43													

1

(11) Fuji's 4-pole standard motor
(22) Rated capacity is calculated by assuming the output rated voltage as 220V for three-phase 200V series and 440V for three-phase 400V series.
(32) Output voltage cannot exceed the power supply voltage.
(45) The auxiliary power input is used as an AC fan power input when combining the unit such as high power factor PWM converter with power regenerative function. (Generally not used.)
(5) The auxiliary power input is used as an AC fan power input when combining the unit such as high power factor PWM converter with power regenerative function. (Generally not used.)
(6) Interphase voltage unbalance ratio(%) = (max. voltage [V])-rin. voltage [V])/3-phase average voltage [V]×67/See [EC61800-3.) Use the DC reactor (ACR: optional) when used with 2 to 3 % of unbalance ratio.
(7) The value is calculated on assumption that the inverter is connected with a power supply capacity of 500kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50kVA) and %X is 5%.
(*9) Obtained when a DC reactor (DCR) is used.
(*10) The 55kW DC reactor (DCR) is optional with HD spec, and is provided as a standard accessory with LD spec.

Standard Specifications (EMC filter buit-in type)

Three-phase 200V series

HD (High Duty) spec for heavy load

	ltem									Specifi	cations	;							
Тур	e(FRN G1E-2J)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
Nor	minal applied motor [kW] (*1)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
S	Rated capacity [kVA] (*2)		1.1	1.9	3	4.2	6.8	10	14	18	24	28	34	45	55	68	81	107	131
ting	Rated voltage [V] (*3)		Three	-phase 2	200 to 24	40V (witl	n AVR)							Three	-phase 2	200 to 23	30V (witl	h AVR)	
ıt ra	Rated Current [A] (*4)		3	5	8	11	18	27	37	49	63	76	90	119	146	180	215	283	346
Output ratings	Overload capability		150%	for 1min	, 200%	for 3.0s													
õ	Rated frequency [Hz]		50, 60	Hz															
	Main circuit power Phases, voltage, frequency	,	Three	-phase 2	:00 to 24	40V, 50/6	60Hz									200 to 2 200 to 2			
sbu	Auxiliary control power inp Phases, voltage, frequency		-	-	Single	-phase 2	200 to 2	40V, 50/	60Hz					Single	e-phase	200 to 2	230V, 50	/60Hz	
Input ratings	Auxiliary power input for fa Phases, voltage, frequency		-	_												e-phase e-phase			
<u> </u>	Voltage, frequency variatio	าร	Voltag	e:+10 to	-15% (/oltage i	unbalan	ce:2% o	r less (*	6)) Frequ	ency:+5	5 to -5%						_	
	Rated current [A] (*7)	with DCR	1.6	3.2	6.1	8.9	15	21.1	28.8	42.2	57.6	71	84.4	114	138	167	203	282	334
		without DCR	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80.1	97	112	151	185	225	270	_	-
	Required power supply capacity (*8	with DCR	0.6	1.2	2.2	3.1	5.2	7.4	10	15	20	25	30	40	48	58	71	98	116
	Torque [%] (*9)		15	0%			100%				20	%				10 to	15%		
	Braking transistor							Built-in									-		
5	Minimum connective resist	ance	10		4		24	16	12	8	6	4					_		
Braking	Torque [%]		180	-	18		180%	180%		180%	180%	180)%						
Br	Built-in braking resistance		10	0Ω		40Ω		20	Ω										
		raking time[s]		-		5s		-											
		5ED	5	3	5	3	2	3	2					-					
-	DC injection braking			<u>v 1</u>				ing time			<u> </u>								
	C filter				complia	ince: em	ission, i	mmunity	: catego	ory C3(2	na Env.)	(EN6180	0-3:200)4)				0	
	reactor (DCR) (*10)		Option					000 5 4										Standard	accessory
	licable safety standards					. 0		800-5-1:	2003					1000					
	closure (IEC60529)			closed ty										IP00 o	pen type	e, UL op	en type		
	bling method			l cooling		Fan co	-	7.1	7.0	7.0	107	10.7	11.0	00	00	40	40		
vve	ight/Mass [kg]		2.0	2.2	3.0	3.2	3.4	7.1	7.6	7.6	10.7	10.7	11.2	26	32	42	43		

LD (Low Duty) spec for light load

ltem										Specifi	cations								
e(FRN G1E-2J)			0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
minal applied motor [kW] (*1)		-	-	-	-	-	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Rated capacity [kVA] (*2))		-	-	-	-	-	11	16	20	25	30	43	55	68	81	107	131	158
Rated voltage [V] (*3)								Three	-phase 2	200 to 24	40V (wit	h AVR)		Three	-phase 2	200 to 23	30V (with	n AVR)	
Rated Current [A] (*4)			_	_	-	-	_	31.8 (29)	46.2 (42)	59.4 (55)	74.8 (68)	88 (80)	115 (107)	146	180	215	283	346	415
Overload capability					-			120% 1	ior 1min										
Rated frequency [Hz]					-			50, 60ł	Ηz										
Main circuit power Phases, voltage, frequen	су				-			Three-	phase 2	00 to 24	0V,50/6	OHz							
					-			Single	-phase 2	200 to 24	40V,50/6	0Hz		Single	e-phase	200 to 2	230V,50/	60Hz	
		5)			-			-	-										
Voltage, frequency variat	ions				-			Voltage	e:+10 to	-15% (\	/oltage ι	Inbalanc	e:2% or	· less (*6	6)) Frequ	iency:+5	5 to -5%		
		with DCR	-	-	-	-	-	28.8	42.2	57.6	71.0	84.4	114	138	167	203	282	334	410
Rated current [A] (7)		without DCR	-	—	-	-	—	42.7	60.7	80.1	97.0	112	151	185	225	270	-	-	—
Required power supply capacity	(*8)	with DCR	_	-	-	-	-	10	15	20	25	30	40	48	58	71	98	116	143
Torque [%] (*9)					-			70	%		1	5%				7 to	12%		
Braking transistor					-												_		
	stand	ce			_					-	-	4	· ·				_		
										130%	140%	150%	130%						
Built-in braking resistanc					-									_					
-		• • •			-									-					
DO isis sting backing	%EI	D			-									_	00.0.5			000/	
, 0									0 1				<u> </u>			<u> </u>			04)
										u compli	ance: el	mssion,	mmuhi	.y. categ	019 03(2				,
. , , , ,					_					2No 14	(nondin		1800-5	1.2003			Janda	ilu acce	ssory
,												0/-					on tuno		
					-					, 010300 l	795, UL	oponitype	, (01 00)	1-00 0	реп туре	, UL UP	эн туре		
*								7.1	7.6	7.6	10.7	10.7	11.2	26	32	42	43		
	e(FRN G GIE-2J) minal applied motor [kW] (Rated capacity [kVA] (*2] Rated voltage [V] (*3) Rated Current [A] (*4) Overload capability Rated frequency [H2] Main circuit power Phases, voltage, frequer Auxiliary control power input for Phases, voltage, frequer Auxiliary power input for Phases, voltage, frequer Voltage, frequency variat Rated current [A] (*7) Required power supply capacity Torque [%] (*9) Braking transistor Minimum connective resi Torque [%]	e(FRN □ □ G1E-2J) minal applied motor [kW] (*1) Rated capacity [kVA] (*2) Rated corrent [A] (*4) Overload capability Rated frequency [Hz] Main circuit power Phases, voltage, frequency Auxiliary control power input Phases, voltage, frequency (* Voltage, frequency variations Rated current [A] (*7) Required power supply capacity (*8) Torque [%] (*9) Braking transistor Minimum connective resistance Torque [%] Built-in braking resistance C filter reactor (DCR) (*10) blciable safety standards closure (IEC60529) Ding method	e(FRN □ □ G1E-2J) minal applied motor [kW] (*1) Rated capacity [kVA] (*2) Rated voltage [V] (*3) Rated Current [A] (*4) Overload capability Rated frequency [Hz] Main circuit power Phases, voltage, frequency Auxiliary control power input Phases, voltage, frequency (*5) Voltage, frequency variations Rated current [A] (*7) Required power supply capacity (*8) With DCR Torque [%] (*9) Braking transistor Minimum connective resistance Torque [%] Built-in braking resistance Built-in braking resistance C filter reactor (DCR) (*10) blcable safety standards closure (IEC60529) Ding method	e(FRNG1E-2J) 0.4 minal applied motor [kW] (*1) - Rated capacity [kVA] (*2) - Rated capacity [kVA] (*2) - Rated Current [A] (*4) - Overload capability - Rated frequency [Hz] - Main circuit power - Phases, voltage, frequency - Auxiliary control power input - Phases, voltage, frequency (*5) - Voltage, frequency variations - Rated current [A] (*7) with DCR Required power supply capacity (*8) with DCR Torque [%] (*9) staking transistor Minimum connective resistance - Torque [%] - Built-in braking resistance - DC injection braking - C filter - reactor (DCR) (*10) - Dicable safety standards - closure (IEC60529) - Ding method -	e(FRNG1E-2J) 0.4 0.75 minal applied motor [kW] (*1) - - Rated capacity [kVA] (*2) - - Rated capacity [kVA] (*2) - - Rated Current [A] (*4) - - Overload capability - - Rated frequency [Hz] - - Main circuit power Phases, voltage, frequency - Auxiliary control power input Phases, voltage, frequency (*5) - Voltage, frequency variations - - Rated current [A] (*7) with DCR - Required power supply capacity (*8) with DCR - Torque [%] (*9) staking transistor - Minimum connective resistance - - Torque [%] - - - Built-in braking resistance - - - DC injection braking - - - C filter - - - reactor (DCR) (*10) - - - blocure (IEC60529) - - -	e(FRN G1E-2J) 0.4 0.75 1.5 minal applied motor [kW] (*1) – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –<	e(FRN $\Box \Box G1E-2J$)0.40.751.52.2minal applied motor [kW] (*1)Rated capacity [kVA] (*2)Rated capacity [kVA] (*2)Rated current [A] (*4)Overload capabilityRated frequency [Hz]Auxiliary control power inputPhases, voltage, frequencyAuxiliary power input for fan Phases, voltage, frequency (*5)Rated current [A] (*7)with DCRRequired power supply capacity (*8)with DCRTorque [%] (*9)Braking transistorTorque [%] (*9)DC injection brakingDC injection brakingDC injection brakingDC injection brakingDC injection brakingDC injection brakingDificable safety standardsDing method <t< td=""><td>e(FRN $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$</td><td>e(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 minal applied motor [kW] (*1) - - - - 7.5 Bated capacity [kVA] (*2) - - - - 7.5 Rated capacity [kVA] (*2) - - - - 11 Rated capacity [kVA] (*2) - - - - 11 Rated current [A] (*4) - - - - 31.8 Overload capability - - - - 31.8 Rated frequency [Hz] - - - - 31.8 Auxiliary control power input - - - Single Phases, voltage, frequency ' - - Single Phases, voltage, frequency (*5) - - - 28.8 Rated current [A] (*7) with DCR - - - 10 Rated current [A] (*1) with DCR - - - 1</td><td>e(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 minal applied motor [kW] (*1) - - - - - 7.5 11 Rated capacity [kVA] (*2) - - - - - 7.5 11 Rated current [A] (*4) - - - - - 11 16 Overload capability - - - - - 31.8 46.2 Overload capability - - - - - 31.8 46.2 Main circuit power Phases, voltage, frequency [Hz] - - - - 50, 60Hz Auxiliary control power input Phases, voltage, frequency (*5) - - Three-phase 2 Auxiliary power input for fan Phases, voltage, frequency variations - Voltage:+10 to - Rated current [A] (*7) with DCR - - - 42.7 60.7 Required power supply capacity (*8) with DCR - -</br></td><td>e(FRN G1E-2.) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 minal applied motor [kW] (*1) - - - - - - 7.5 11 15 Rated capacity [kVA] (*2) - - - - - - 11 16 20 Rated voltage [V] (*3) - - - - - - 11 16 20 Overload capability - - - - - 31.8 46.2 59.4 Main circuit power - - - - - 31.8 46.2 59.4 Phases, voltage, frequency [Hz] - - - - 120% for 1min 120% for 1min Auxiliary control power input Phases, voltage, frequency - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>e(FRN O.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 Rated capacity [kVA] (*2) - - - - - 7.5 11 15 18.5 Rated capacity [kVA] (*2) - - - - 11 16 20 25 Rated voltage [V] (*3) - - - - 11 16 20 25 Overload capability - - - - 31.8 64.2 59.4 74.8 Overload capability - - - - 20% for 1min 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6</td></t<> <td>ee(FRN □ G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 naia applied motor [kVA] (*1) - - - - - 7.5 11 15 18.5 22 Rated capacity [kVA] (*2) - - - - 11 16 20 25 30 Rated voltage [V] (*3) - - - - - 11 16 20 25 30 Rated Current [A] (*4) - - - - - 3.29 (42) 59.4 7.4.8 88 88 (80) 00 00 00 0.60 Hz 110 15 0.8.0 (80) 00 0.60 Hz 18.6 (80) 0.60 Hz 110 15 0.60 Hz 110 15 0.60 Hz 110 15 0.60 Hz 120% for 1min 110 16 12 16 17.6 11.1 16 12 16 12 16 12 16 12 16 12 16 12</td> <td>ee(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 ninal applied motor [kW] ('1) - - - - - 7.5 11 15 18.5 22 30 43 Rated capacity [kVA] ('2) - - - - 11 16 20 25 30 43 Rated Current [A] ('4) - - - - - 31.8 46.2 59.4 74.8 88 115 (07) Overload capability - - - - - - 31.8 46.2 59.4 74.8 88 (16) (107) Overload capability - - - - - - 50.60Hz - - - 50.60Hz - - - 50.60Hz - - - - - - - - - - - - - - - - - - - - -</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>e(FRN □ G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 rainal applied motor [kW] (*1) - - - - - 7.5 11 15 18.5 22 30 37 45 Rated capacity [kVA] (*2) - - - - - 11 16 20 25 30 43 55 68 Rated current [A] (*4) - - - - - 18. 46.2 59.4 74.8 688 115 146 180 Overload capability - - - - - 50.60Hz Three-phase 20 50.60Hz Three-phase Three-phase Main circuit power Phases, voltage, frequency - - - - - 50.60Hz Three-phase Single-phase 200 to 240V.50/60Hz Single-phase Single-phase 50.60Hz Three-phase Three-phase Three-phase 114 138 167 13.5 22.5 30.4 44.114 138 167<td>ee(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 Final appled motor [kW] (*1) — — — — — 7.5 11 15 18.5 22 30 37 45 55 Rated capacity [kWA] (*2) — — — — — 11 16 20 25 30 43 55 68 81 Rated corrent [A] (*4) — — — — 31.8 46.2 59.4 74.8 88 115 146 180 215 Overload capability — — — 120% for 1min Three-phase 200 to 240V,50/60Hz Three-phase 200 to 240V,50/60Hz</td><td>ee(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 Trinal applied motor [kW] ('1) - - - - - 7.5 11 15 18.5 22 30 37 45 55 75 Rated capacity [kVA] ('2) - - - - - - 11 16 20 25 30 37 45 55 75 Rated ortage [V] ('3) - - - - - 31.8 46.2 59.4 74.8 88 115 146 180 215 283 Overload capability - - - - 31.8 46.2 59.4 74.8 88 115 146 180 215 283 Overload capability - - - - 31.8 46.2 59.4 74.8 88 116 107 146 180.0 201.020V50/F Maine countrol power input Power input</td><td>ee(FRN O.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 Rated capacity (IvA) (2) - - - - - 7.5 11 15 18.5 22 30 37 45 55 75 90 Rated capacity (IvA) (2) - - - - - 11 16 20 25 30 43 55 68 81 107 131 Rated Current (A) (Y3) - - - - - 31.8 46.2 56.4 74.8 88 115 146 180 215 283 346 Overload capability - - - - 50.60Hz Three-phase 200 to 240V.50/60Hz Three-phase 200 to 220V.0Hz Three-phase 200 to 220V.0Hz<!--</td--></td></td>	e(FRN $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	e(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 minal applied motor [kW] (*1) - - - - 7.5 Bated capacity [kVA] (*2) - - - - 7.5 Rated capacity [kVA] (*2) - - - - 11 Rated capacity [kVA] (*2) - - - - 11 Rated current [A] (*4) - - - - 31.8 Overload capability - - - - 31.8 Rated frequency [Hz] - - - - 31.8 Auxiliary control power input - - - Single Phases, voltage, frequency ' - - Single Phases, voltage, frequency (*5) - - - 28.8 Rated current [A] (*7) with DCR - - - 10 Rated current [A] (*1) with DCR - - - 1	e(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 minal applied motor [kW] (*1) - - - - - 7.5 11 Rated capacity [kVA] (*2) - - - - - 7.5 11 Rated current [A] (*4) - - - - - 11 16 Overload capability - - - - - 31.8 46.2 Overload capability - - - - - 31.8 46.2 Main circuit power Phases, voltage, frequency [Hz] - - - - 50, 60Hz Auxiliary control power input Phases, voltage, frequency (*5) - - Three-phase 2 Auxiliary power input for fan 	e(FRN G1E-2.) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 minal applied motor [kW] (*1) - - - - - - 7.5 11 15 Rated capacity [kVA] (*2) - - - - - - 11 16 20 Rated voltage [V] (*3) - - - - - - 11 16 20 Overload capability - - - - - 31.8 46.2 59.4 Main circuit power - - - - - 31.8 46.2 59.4 Phases, voltage, frequency [Hz] - - - - 120% for 1min 120% for 1min Auxiliary control power input Phases, voltage, frequency - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	e(FRN O.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 Rated capacity [kVA] (*2) - - - - - 7.5 11 15 18.5 Rated capacity [kVA] (*2) - - - - 11 16 20 25 Rated voltage [V] (*3) - - - - 11 16 20 25 Overload capability - - - - 31.8 64.2 59.4 74.8 Overload capability - - - - 20% for 1min 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6	ee(FRN □ G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 naia applied motor [kVA] (*1) - - - - - 7.5 11 15 18.5 22 Rated capacity [kVA] (*2) - - - - 11 16 20 25 30 Rated voltage [V] (*3) - - - - - 11 16 20 25 30 Rated Current [A] (*4) - - - - - 3.29 (42) 59.4 7.4.8 88 88 (80) 00 00 00 0.60 Hz 110 15 0.8.0 (80) 00 0.60 Hz 18.6 (80) 0.60 Hz 110 15 0.60 Hz 110 15 0.60 Hz 110 15 0.60 Hz 120% for 1min 110 16 12 16 17.6 11.1 16 12 16 12 16 12 16 12 16 12 16 12	ee(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 ninal applied motor [kW] ('1) - - - - - 7.5 11 15 18.5 22 30 43 Rated capacity [kVA] ('2) - - - - 11 16 20 25 30 43 Rated Current [A] ('4) - - - - - 31.8 46.2 59.4 74.8 88 115 (07) Overload capability - - - - - - 31.8 46.2 59.4 74.8 88 (16) (107) Overload capability - - - - - - 50.60Hz - - - 50.60Hz - - - 50.60Hz - - - - - - - - - - - - - - - - - - - - -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e(FRN □ G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 rainal applied motor [kW] (*1) - - - - - 7.5 11 15 18.5 22 30 37 45 Rated capacity [kVA] (*2) - - - - - 11 16 20 25 30 43 55 68 Rated current [A] (*4) - - - - - 18. 46.2 59.4 74.8 688 115 146 180 Overload capability - - - - - 50.60Hz Three-phase 20 50.60Hz Three-phase Three-phase Main circuit power Phases, voltage, frequency - - - - - 50.60Hz Three-phase Single-phase 200 to 240V.50/60Hz Single-phase Single-phase 50.60Hz Three-phase Three-phase Three-phase 114 138 167 13.5 22.5 30.4 44.114 138 167 <td>ee(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 Final appled motor [kW] (*1) — — — — — 7.5 11 15 18.5 22 30 37 45 55 Rated capacity [kWA] (*2) — — — — — 11 16 20 25 30 43 55 68 81 Rated corrent [A] (*4) — — — — 31.8 46.2 59.4 74.8 88 115 146 180 215 Overload capability — — — 120% for 1min Three-phase 200 to 240V,50/60Hz Three-phase 200 to 240V,50/60Hz</td> <td>ee(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 Trinal applied motor [kW] ('1) - - - - - 7.5 11 15 18.5 22 30 37 45 55 75 Rated capacity [kVA] ('2) - - - - - - 11 16 20 25 30 37 45 55 75 Rated ortage [V] ('3) - - - - - 31.8 46.2 59.4 74.8 88 115 146 180 215 283 Overload capability - - - - 31.8 46.2 59.4 74.8 88 115 146 180 215 283 Overload capability - - - - 31.8 46.2 59.4 74.8 88 116 107 146 180.0 201.020V50/F Maine countrol power input Power input</td> <td>ee(FRN O.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 Rated capacity (IvA) (2) - - - - - 7.5 11 15 18.5 22 30 37 45 55 75 90 Rated capacity (IvA) (2) - - - - - 11 16 20 25 30 43 55 68 81 107 131 Rated Current (A) (Y3) - - - - - 31.8 46.2 56.4 74.8 88 115 146 180 215 283 346 Overload capability - - - - 50.60Hz Three-phase 200 to 240V.50/60Hz Three-phase 200 to 220V.0Hz Three-phase 200 to 220V.0Hz<!--</td--></td>	ee(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 Final appled motor [kW] (*1) — — — — — 7.5 11 15 18.5 22 30 37 45 55 Rated capacity [kWA] (*2) — — — — — 11 16 20 25 30 43 55 68 81 Rated corrent [A] (*4) — — — — 31.8 46.2 59.4 74.8 88 115 146 180 215 Overload capability — — — 120% for 1min Three-phase 200 to 240V,50/60Hz Three-phase 200 to 240V,50/60Hz	ee(FRN G1E-2J) 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 Trinal applied motor [kW] ('1) - - - - - 7.5 11 15 18.5 22 30 37 45 55 75 Rated capacity [kVA] ('2) - - - - - - 11 16 20 25 30 37 45 55 75 Rated ortage [V] ('3) - - - - - 31.8 46.2 59.4 74.8 88 115 146 180 215 283 Overload capability - - - - 31.8 46.2 59.4 74.8 88 115 146 180 215 283 Overload capability - - - - 31.8 46.2 59.4 74.8 88 116 107 146 180.0 201.020V50/F Maine countrol power input Power input	ee(FRN O.4 0.75 1.5 2.2 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 Rated capacity (IvA) (2) - - - - - 7.5 11 15 18.5 22 30 37 45 55 75 90 Rated capacity (IvA) (2) - - - - - 11 16 20 25 30 43 55 68 81 107 131 Rated Current (A) (Y3) - - - - - 31.8 46.2 56.4 74.8 88 115 146 180 215 283 346 Overload capability - - - - 50.60Hz Three-phase 200 to 240V.50/60Hz Three-phase 200 to 220V.0Hz Three-phase 200 to 220V.0Hz </td

 Weight/Mixes [kg]

 (*1) Fujis 4-pole standard motor

 (*2) Rated capacity is calculated by assuming the output rated voltage as 220V for three-phase 200V series and 440V for three-phase 400V series.

 (*3) Output voltage cannot exceed the power supply voltage.

 (*5) The auxiliary power input is used as an AC fan power input when combining the unit such as high power factor PWM converter with power regenerative function. (Generally not used.)

 (*6) Interphase voltage unbalance ratio(*6) [- (max. voltage [V]) - mix. voltage [V])/3-phase average voltage [V]×67(See EIC61800-3.) Use the DC reactor (ACR: optional) when used with 2 to 3 % of unbalance ratio.

 (*7) The value is calculated on assumption that the inverter is connected with a power supply capacity of 500kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50kVA) and %X is 5%.

 (*9) Average braiking torque obtained by use of a motor. (Varies with the efficiency of the motor.)

 (*10) The 55kW DC reactor (DCR) is optional with HD spec, and is provided as a standard accessory with LD spec.

Γ

Standard Specifications (EMC filter buit-in type)

Three-phase 400V series

(0.4 to 55kW) HD (High Duty) spec for heavy load

	ltem								Specif	ications							
Ту	pe(FRNG1E-4J)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
Nor	ninal applied motor [kW] (*1)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
s	Rated capacity [kVA] (*2)		1.1	1.9	2.8	4.1	6.8	10	14	18	24	29	34	45	57	69	85
ting	Rated voltage [V] (*3)		Three-p	hase 38	0 to 480V	(with AV	'R)										
Output ratings	Rated Current [A] (*4)		1.5	2.5	4	5.5	9	13.5	18.5	24.5	32	39	45	60	75	91	112
Itpu	Overload capability		150% fo	or 1min, 2	200% for	3.0s											
ō	Rated frequency [Hz]		50, 60H	lz													
	Main circuit power Phases, voltage, frequency		Three-p	ohase 380	0 to 480V	,50/60Hz											
sốu	Auxiliary control power inpu Phases, voltage, frequency	t	_		Single-	ohase 38	0 to 480V	/, 50/60H	z								
Input ratings	Auxiliary power input for fan Phases, voltage, frequency		_	•													
<u> </u>	Voltage, frequency variation	s	Voltage	:+10 to -	15% (Volt	age unba	lance:2%	or less	*6)) Fred	quency:+	5 to -5%						
	Rated current [A] (*7)	with DCR	0.85	1.6	3.0	4.5	7.5	10.6	14.4	21.1	28.8	35.5	42.2	57.0	68.5	83.2	102
		without DCR	1.7	3.1	5.9	8.2	13.0	17.3	23.2	33	43.8	52.3	80.6	77.9	94.3	114	140
	Required power supply capacity (*8)	with DCR	0.6	1.2	2.1	3.2	5.2	7.4	10	15	20	25	30	40	48	58	71
	Torque [%] (*9)		150% 100% 20%									10 to 15%					
	Braking transistor														-	-	
5	Minimum connective resista	nce	20		18		96	64	48	32	24	1			-	_	
Braking	Torque [%]		180		180		180%	180%	180%	180%	180%	180	0%				
Bra	Built-in braking resistance		720Ω	470Ω		160Ω		80	Ω				-	-			
		aking time[s]				5s							-	-			
		ED	5	3	5	3	2	3	2				-	-			
	DC injection braking		Starting frequency:0.0 to 60.0Hz, Braking time: 0.0 to 30.0s, Braking level:0 to 100%														
	C filter		EMC standard compliance: emission, immunity: category C3 (2nd Env.)(EN61800-3:2004)														
	reactor (DCR) (*10)		Optional UL508C, C22.2No.14 (pending), EN61800-5-1:2003														
<u> </u>	licable safety standards					07.								1000			
	losure (IEC60529)		IP20(IEC60529) closed type, UL open type (UL 50) IP00 open type, UL open type Natural cooling Fan cooling										ype				
	oling method					Fan coo	0	7.4	7.0	7.0	107	10.7	11.0		00	00	
Wei	ght/Mass [kg]		2.0	2.2	3.0	3.2	3.4	7.1	7.6	7.6	10.7	10.7	11.2	26	26	32	36

(75 to 630kW) HD (High Duty) spec for heavy load

	ltem								Specif	ications							
Тур	e(FRN G1E-4J)		75	90	110	132	160	200	220	280	315	355	400	500	630		
Nor	ninal applied motor [kW] (*1)		75	90	110	132	160	200	220	280	315	355	400	500	630		
s	Rated capacity [kVA] (*2)		114	134	160	192	231	287	316	396	445	495	563	731	891		
ting	Rated voltage [V] (*3)		Three-p	hase 38	0 to 480V	(with AV	/R)										
t ra	Rated Current [A] (*4)		150	176	210	253	304	377	415	520	585	650	740	960	1170		
Output ratings	Overload capability		150% fo	or 1min, 2	200% for	3.0s											
ō	Rated frequency [Hz]		50, 60H	lz													
	Main circuit power Phases, voltage, frequency				0 to 440V 0 to 480V												
sb	Auxiliary control power input Phases, voltage, frequency		Single-p	ohase 38	0 to 480V	/, 50/60Hz	2										
Input ratings	Auxiliary power input for fan Phases, voltage, frequency (*	5)			0 to 440\ 0 to 480\												
브	Voltage, frequency variations		Voltage	:+10 to -	15% (Volt	age unba	lance:2%	or less	(*6)) Free	quency:+	5 to -5%						
	Rated current [A] (*7)	with DCR	138	164	201	238	286	357	390	500	559	628	705	881	1115		
		without DCR	-	-	-	-	-	—	—	-	-	-	-	-	-		
	Required power supply capacity [kVA] (*8)	with DCR	96	114	140	165	199	248	271	347	388	436	489	611	773		
	Torque [%] (*9)		10 to 15	5%													
p	Braking transistor		_														
Braking	Minimum connective resistant	ce	_														
ā	Torque [%]																
	DC injection braking		Starting frequency:0.0 to 60.0Hz, Braking time: 0.0 to 30.0s, Braking level:0 to 100%														
	C filter		EMC standard compliance: emission, immunity: category C3 (2nd Env.)(EN61800-3:2004)														
-	reactor (DCR) (*10)		Standard accessory														
· · ·	licable safety standards		UL508C, C22.2No.14 (pending), EN61800-5-1:2003														
	losure (IEC60529)		IP00 open type, UL open type														
	ling method		Fan coo	oling				I	1						1		
Wei	ght/Mass [kg]		43														

(*1) Fuji's 4-pole standard motor

(1) Fujis 4-pole standard motor
(2) Rated capacity is calculated by assuming the output rated voltage as 220V for three-phase 200V series and 440V for three-phase 400V series.
(3) Output voltage cannot exceed the power supply voltage.
(5) The auxiliary power input is used as an AC fan power input when combining the unit such as high power factor PWM converter with power regenerative function. (Generally not used.)
(6) Interphase voltage unbalance ratio⁽⁶⁾, [– (max. voltage [V] - mix. voltage [V])/3-phase average voltage [V]/2-7(See IEC61800-3). Use the DC reactor (ACR: optional) when used with 2 to 3 % of unbalance ratio.
(7) The value is calculated on assumption that the inverter is connected with a power supply capacity of 500kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50kVA) and %X is 5%.
(*9) Average braking torque obtained by use of a motor. (Varies with the efficiency of the motor.)
(*1) The 55kW DC reactor (DCR) is optional with HD spec, and is provided as a standard accessory with LD spec.

Three-phase 400V series

(5.5 to 55kW) LD (Low Duty) spec for light load

	Item									Specif	ications							
Тур	e(FRN G1E-4J)			0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
No	minal applied motor [kW] (*1)		-	-	-	-	-	7.5	11	15	18.5	22	30	37	45	55	75
S	Rated capacity [kVA] (*2))		-	-	-	-	-	12	17	22	28	33	45	57	69	85	114
ting	Rated voltage [V] (*3)								Three-p	ohase 38	0 to 480∖	/ (with A	/R)					
Output ratings	Rated Current [A] (*4)			-	-	-	_	-	16.5	23	30.5	37	45	60	75	91	112	150
Itpu	Overload capability					-			120% f	or 1min								
õ	Rated frequency [Hz]					-			50, 60H	Ηz								
	Main circuit power Phases, voltage, frequer	су				-			Three-	phase 38	0 to 480\	/, 50/60H	z					
sối	Auxiliary control power ir Phases, voltage, frequer					-			Single-	phase 38	30 to 480'	V, 50/60H	lz					
Input ratings	Auxiliary power input for Phases, voltage, frequer		i)			-			-									
브	Voltage, frequency variat	ions				-			Voltage	e:+10 to	-15% (Vo	ltage unb	alance:29	% or less	(*6)) Fre	quency:+	5 to -5%	
	Rated current [A] (*7)		with DCR	-	-	-	-	-	14.4	21.1	28.8	35.5	42.2	57.0	68.5	83.2	102	138
			without DCR	_		_	_	_	23.2	33.0	43.8	52.3	60.6	77.9	94.3	114	140	-
	Required power supply capacity	(*8)	with DCR	-	-	_	-	-	10	15	20	25	30	40	48	58	71	96
	Torque [%] (*9)					-			70)%			5%			7 to	12%	
	Braking transistor					-					Built						-	
0	Minimum connective resi	istanc	e			_			64	48	32	24	16	16			_	
Braking	Torque [%]								130%	120%	130%	140%	150%	130%				
B	Built-in braking resistanc					-			80					-				
			ng time[s]			_			3.7s	3.4s								
		%ED				-			2.2	1.4		00.011	D	_	00.0.5			00/
	DC injection braking C filter	_				_			```	<u> </u>	· ·		Braking ti					0% 0-3:2004
	reactor (DCR) (*10)								Optiona		omplianc	e. emissi	on, immu	my. cate	yory C3	Zhu Env.		Standard accessory
	blicable safety standards					_					Jo 14 (ne	ndina) F	N61800-	5-1.2003				
	closure (IEC60529)					-				-		0,.	open type		IP00 op	en type I	II. open t	2/00
	pling method					_			Fan co		, 0.00001	.,po 02.	spon type	(0200)	_ 11 00 0p	en type, t	JE Open i	ype
	ight/Mass [kg]					-			7.1	7.6	7.6	10.7	10.7	11.2	26	26	32	36

(75 to 630kW) LD (Low Duty) spec for light load

	Item								Specif	ications							
Ту	e(FRN G1E-4J)		75	90	110	132	160	200	220	280	315	355	400	500	630		
Nor	ninal applied motor [kW] (*1)		90	110	132	160	200	220	280	355	400	450	500	630	710		
(0)	Rated capacity [kVA] (*2)		134	160	192	231	287	316	396	495	563	640	731	891	1044		
ing	Rated voltage [V] (*3)		Three-p	phase 38	0 to 480V	(with A	/R)										
trat	Rated Current [A] (*4)		176	210	253	304	377	415	520	650	740	840	960	1170	1370		
Output ratings	Overload capability		120% f	or 1min													
0	Rated frequency [Hz]		50, 60ł	Ηz													
	Main circuit power Phases, voltage, frequency				0 to 440V 0 to 480V												
gs	Auxiliary control power input Phases, voltage, frequency		Single-	phase 38	0 to 440V	/, 50/60H	z										
ut ratings	Auxiliary power input for fan Phases, voltage, frequency (*	5)			0 to 440\ 0 to 480\												
Input	Voltage, frequency variations		Voltage	:+10 to -	15% (Volt	age unba	alance:2%	or less ((*6)) Freq	uency:+5	to -5%	_		_	_	_	_
	Rated current [A] (*7)	with DCR	164	210	238	286	357	390	500	628	705	789	881	1115	1256		
	Rated current [A] (7)	without DCR	-	-	-	-	-	-	-	-	-	-	-	-	-		
	Required power supply capacity [kVA] (*8)	with DCR	114	140	165	199	248	271	347	436	489	547	611	773	871		
	Torque [%] (*9)		7 to 12	%													
g	Braking transistor		-														
Braking	Minimum connective resistant	ce	_														
۳ ۳	Torque [%]																
	DC injection braking				cy:0.0 to												
EM	C filter		EMC st	andard c	ompliance	e: emissio	on, immu	nity: cate	gory C3 (2nd Env.)	(EN6180	0-3:2004	·)				
DC	reactor (DCR) (*10)			rd access													
App	licable safety standards		UL5080	C, C22.2N	lo.14 (pe	nding), E	N61800-8	5-1:2003									
	losure (IEC60529)				UL open	type											
Cod	ling method		Fan coo	oling													
We	ght/Mass [kg]		43														

 (*1) Fuijis 4-pole standard motor

 (*2) Rated capacity is calculated by assuming the output rated voltage as 220V for three-phase 200V series and 440V for three-phase 400V series.

 (*3) Output voltage cannot exceed the power supply voltage.

 (*5) The auxiliary power input is used as an AC fan power input when combining the unit such as high power factor PWM converter with power regenerative function. (Generally not used.)

 (*6) Interphase voltage unbalance ratio(%) = (max. voltage [V].*anix.voltage [V].*bnase average voltage input when used with 2 to 3 % of unbalance ratio.

 (*7) The value is calculated on assumption that the inverter is connected with a power supply capacity of 500kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50kVA) and %X is 5%.

 (*8) Obtained when a DC reactor (DCR) is used.

 (*9) Average braking torque obtained by use of a motor. (Varies with the efficiency of the motor.)

 (*10) The 55kW DC reactor (DCR) is optional with HD spec, and is provided as a standard accessory with LD spec.

Common Specifications

	Item	Explanation	Remarks
	Maximum frequency	 •25 to 500Hz (HD spec, V/f control *1, *2, *3) •25 to 200Hz (HD spec, V/f control w/ PG/vector control w/ PG *4, *5, *7) •25 to 120Hz (HD spec, sensorless vector control *6 LD spec, various controls*1 to 7) 	
rande	Base frequency	+25 to 500Hz variable setting (LD spec: 120Hz)	
Satting 12	Carrier frequency	O.1 to 60.0Hz variable setting (sensorless vector control *6/ vector control w/ PG, 0.0Hz for *7) O.75 to 16kHz variable setting (HD spec: 0.4 to 5.5kW, LD spec: 5.5 to 22kW) O.75 to 10kHz variable setting (HD spec: 75 to 400kW, LD spec: 30 to 55kW) O.75 to 6kHz variable setting (HD spec: 500 to 630kW, LD spec: 75 to 500kW) O.75 to 4kHz variable setting (LD spec: 630kW) Note) Frequency drops automatically to protect the inverter depending on environmental temperature and output current. (This auto drop function can be canceled.)	
	Dutput frequency accuracy	Analog setting: ±0.2% of max. frequency (at 25±10°C) *1 Keypad setting: ±0.01% of max. frequency (at -10 to +50°C)	
Output trequency	Setting resolution	Analog setting: 1/3000 of max. frequency (1/1500 with V2 input) The resolution can be set in the function code. (0.01 to 500Hz) Keypad setting: 0.01Hz (99.99Hz or less), 0.1Hz (100.0 to 500Hz) Link setting: 1/20000 of max. frequency or 0.01Hz (fixed)	*8
J S	speed control range	 Min. speed: Base speed 1:1500 (4P 1r/min to 1500r/min) *7 Min. speed: Base speed 1:200 (4P 7.5r/min to 1500r/min) *6 Min. speed: Base speed 1:100 1:200 (4P 15r/min to 1500r/min, 1024p/r) *4, *5 Min. speed: Base speed 1:4 *7 Min. speed: Base speed 1:2 *4,*5,*6 	*8 *8 *8
S	speed control accuracy	 Analog setting: ±0.2% of max. frequency (at 25±10°C) *4,*5,*7 Digital setting: ±0.01% of max. frequency (at -10 to +50°C) 	
		 Analog setting: ±0.5% or below of base speed (at 25±10[°]C) *6 Digital setting: ±0.5% or below of base speed (at -10 to +50[°]C) 	*8
C	Control method	V/f control *1 Dynamic torque vector control *2 V/f control, the slip compensation is available. *3 V/f control w/ speed sensor (PG optional) *4 Oynamic torque vector control w/ speed sensor (PG optional) *5 Speed sensorless vector control *6 Vector control w/ speed sensor (PG optional) *7	*8 *8 *8
)	Voltage/freq. characteristic	200V series •Base frequency and max. output frequency can be set to 80 to 240V in common. •The AVR control ON/OFF can be selected. *1, *4 •Non-linear V/f setting (3 points): Free voltage (0 to 240V) and frequency (0 to 500Hz) can be set. *1, *4	
		400V series •Base frequency and max. output frequency can be set to 160 to 240V in common. •The AVR control ON/OFF can be selected. *1, *4 •Non-linear V/f setting (3 points): Free voltage (0 to 240V) and frequency (0 to 500Hz) can be set. *1, *4	
Т	orque boost	 •Auto torque boost (For constant torque load) *1 to *4 •Manual torque boost: Torque boost value can be set between 0.0 and 20.0%. *1,*4 •An applied load can be selected. (For constant torque load and variable torque load) *1,*4 	
S	Starting torque (HD spec)	•22kW or below: 200% or higher, 30kW or above: 180% or higher/set frequency: 0.3Hz *6 •22kW or below: 200% or higher, 30kW or above: 180% or higher/set frequency: 0.3Hz .Base frequency 50Hz, slip compensation and auto torque boost operation *1 to*4	*8
S	Start/operation	Keypad operation Start and stop with with and stop keys (Remote keypad : supplied as standard)	_
Control		Start and stop with woo/ (Rev) and stop keys (Multifunctional keypad : optional)	_
		External signals: FWD (REV), RUN, STOP commands (3 wire operation possible), (digital inputs) coast-to-stop, external alarm, alarm reset, etc. Linked operation: Operation through RS-485 or field buss (option) communications	_
-	requency setting	Switching operation command: Remote/local switching, link switching	
	requency setting	Keypad operation Can be set with and keys	"DC+1 to +5V" can be
		External Volume: Can be set with external potentiometer. (1 to 5kΩ 1/2W) Analog Input : 0 to ±10V DC (±5V DC)/0 to ±100% (terminal 12,V2) , 0 to +10V DC (+5V DC)/0+ +100% (terminal 12,V2) : +4 to +20mA DC/0 to 100% (terminal C1)	adjusted with bias and analog input gain.
		UP/DOWN operation: Frequency can be increased or decreased while the digital input signal is ON.	- gam.
		Multistep frequency: Selectable from 16 steps (step 0 to 15)	-
		Linked operation: Frequency can be set through RS-485. (Standard setting) Switching frequency setting: Frequency setting can be switched (2 settings) with external signal (digital input). Remote/local switching, link switching	-
		Auxiliary frequency setting: Terminal 12, C1 or V2 input can be selected respectively as an additional input.	
		Operation at a specified ratio: The ratio can be set by analog input signal.	
		Inverse operation: The setting "0 to +10V DC/0 to 100%" can be switched to "+10 to 0V DC/0 to 100%" by external command. : The setting "4 to +20mA DC/0 to 100%" can be switched to "+20 to 4mA DC/0 to 100%" by external command.	_
		Pulse train input: Pulse input = X7 terminal, rotational direction = general terminal Complementary output: Max. 100kHz, Open collector output: Max. 30kHz	_
		Pulse train input: PG interface option CW/CCW pulse, pulse + rotational direction Complementary output: Max. 100kHz, Open collector output: Max. 25kHz	
	cceleration/deceleration		
ti	me	Switch: The four types of accel./decel. time can be set or selected individually (switchable during operation). Acceleration/deceleration pattern: Linear accel./decel., S-shape accel./decel. (weak, free, (strong)), curvilinear accel./decel. (accel./decel. max. capacity of constant output)	
		Decel. mode (coast-to-stop): Coast-to-stop at the operation command OFF.	
		Forcible stop decel. time: Deceleration stop by the forcible stop 500 .	
		Auto tuning by shortest accel./decel. mode and optimal accel./decel. mode	*8

I.

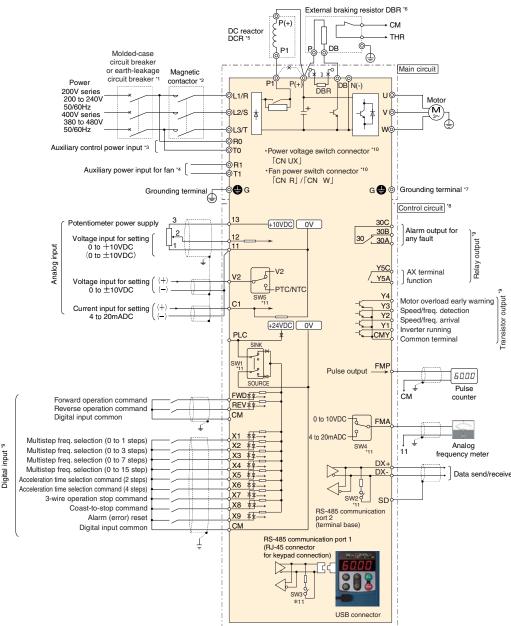
	Item	Explanation	Remark
	Frequency limiter (Upper limit and lower limit frequencies)	Both upper and lower limit frequencies can be variably set in hertz. It is possible to choose the operation done when the set frequency drops below the lower limit from between continuous operation at lower limit frequency and operation stop.	
-	Bias frequency	Bias of set frequency and PID command can be independently set (setting range: 0 to ±100%).	
-	Analog input	Gain : Set in the range from 0 to 200%	
	indig input	Off-set: Set in the range from -0.00 to 45.0% Filter : Set in the range from 0.00s to 5.00s	
,	Jump frequency	•Actuation points (3 points) and their common jump widths (0 to 30.0Hz) can be set.	
,	Jogging operation	•Operation with RUN key (remote keypad), RWD, or REV key (multifunction keypad), or digital contact input RWD, REV (Exclusive accel/decel time setting, exclusive frequency setting)	
	Auto-restart after	Trip at power failure: The inverter trips immediately after power failure.	
	momentary	Trip at power recovery: Coast-to-stop at power failure and trip at power recovery	
	power failure	Deceleration stop: Deceleration stop at power failure, and trip after stoppage Continuous operation: Operation is continued using the load inertia energy. Start at the frequency selected before momentary stop: Coast-to-stop at power failure and start after power recovery at the frequency selected before momentary stop. *1 to *3 Start at starting frequency: Coast-to-stop at power failure and start at the starting frequency after power recovery. *1 to *3	
h	Current limit by hardware	Limiting the current by hardware to prevent overcurrent trip due to sharp load change or momentary power failure which cannot be controlled by software current limit (This function can be cancelled.)	
⊢	Operation by commercial power supply	•With commercial power selection command, the inverter outputs 50/60Hz (SW50, SW60). *1 to *3 • The inverter has the commercial power supply selection sequence.	
;	Slip compensation	Compensates for decrease in speed according to the load. *1 to *3	
	Droop control	Decreases the speed according to the load torque.	
•	Torque limit	Switchable between 1st or 2nd torque limit values • Torque limit, torque current limit, and power limit are set for each quadrant. *6, *7 • Analog torque limit input	*8
Ĺ	Current control (software current limit)	*Automatically reduces the frequency so that the output current becomes lower than the preset operation level. *1 to *5	
	PID Control	PID adjuster for process control and that for dancer control •Switchable between forward and reverse operations Low liquid level stop function (pressurized operation possible before low liquid level stop) • PID command: Keypad, analog input (from terminals 12, C1, V2), RS485 communication PID feedback value (from terminals 12, C1, V2) • Alarm output (absolute value alarm, deviation alarm) • PID output limiter • Integration reset/hold • Anti-reset wind-up function	
	Pick-up	•Estimates the speed of the motor running under no load and starts the motor without stopping it. (Motor electric constant needs tuning: Offline tuning) *1 to * 3 and *6	
	Automatic deceleration	 If the DC link bus voltage or calculated torque exceeds the automatic deceleration level during deceleration, the inverter automatically prolongs the deceleration time to avoid overvoltage trip. (It is possible to select forcible deceleration actuated when the deceleration time becomes three times longer.) If the calculated torque exceeds automatic deceleration level during constant speed operation, the inverter avoids overvoltage trip by increasing the frequency. 	
Γ	Deceleration characteristic (improved braking capacity)	• The motor loss is increased during deceleration to reduce the regenerative energy in the inverter to avoid overvoltage trip. *1, *4	
	Automatic energy-saving operation	 The output voltage is controlled to minimize the total sum of the motor loss and inverter loss at a constant speed. (With digital input signal, automatic energy saving mode can be turned ON or OFF by an external device.) 	*8
H	Overload prevention control	·If the ambient temperature or GBT joint temperature increases due to overload, the inverter lowers the output frequency to avoid overload.	
-	Off-line tuning	·Rotary type and non-rotary type are available for tuning the motor constant.	
	On-line tuning	·Used as a motor constant for compensating the temperature change	*8
	Cooling fan ON/OFF control	 Detects the internal temperature of the inverter and stops the cooling fan when the temperature is low. The fan control signal can be output to an external device. 	
	Settings for 2nd to 4th motors	Switchable among the four motors Code data for four kinds of specific functions can be switched (even during operation). It is possible to set the base frequency, rated current, torque boost, and electronic thermal slip compensation as the data for 1st to 4th motors.	*8
	Universal DI	•The status of external digital signal connected with the universal digital input terminal is transferred to the host controller.	
	Universal DO	Digital command signal from the host controller is output to the universal digital output terminal.	
	Universal AO	•The analog command signal from the host controller is output to the analog output terminal.	
_	Overload stop function	•When the torque or the current exceeds the set value, the inverter slows down and stop or coast-to-stop the motor. When the motor is stopped by hitting, the inverter controls the current to secure the holding torque. *1 to *5	*8
	Speed control	Notch filter for vibration control, vibration suppressing observer. *7	*8
L		•Estimates the GD ² value applied to the motor shaft from the load, and automatically controls the ASR system constant. *6 and *7	
F	Preliminary excitation	•Excitation is carried out to create the motor flux before starting the motor. *6 and*7	
⊢	Zero speed control	The motor speed is held to zero by forcibly zeroing the speed command. *7	*0
⊢	Servo lock	Stops the inverter and holds the motor in stop position. *7	*8
	Torque control *6, *7	 Analog torque command input Speed limit function is provided to prevent the motor from becoming out of control. 	*8
	Rotating direction control	Preventing reverse rotation ·Preventing forward rotation	
⊢	Preventing condensation in motor	•When the inverter is stopped, current is automatically supplied to the motor to keep the motor warm and avoid condensation.	
+	Customized logic interface	Available in 10 steps with the functions of 2-input, 1-output, logical operation, and timer function	*8
	Run / Stop	 Speed monitor (set frequency, output frequency, motor speed, load shaft speed, line speed, and speed indication with percent) Output current [A], output voltage [V], calculated torque, input power [kW], PID reference value, PID feedback value, PID output 	
	Inverter life warning	 Life judgment of the main circuit capacitor, electrolytic capacitor on printed circuit board, and cooling fan Life warning information can be output to an external device. Ambient temperature: 40°C, Load rate: inverter rated current 100% (LD type: 80%) 	
	Cumulative running hours	•Displays the inverter cumulative running hours, integrated power, cumulative motor running hours, and the number of operation start times (of each motor). •Outputs the warning when the maintenance time or the number of start times has exceeded the preset.	
ŀ	Trip mode	Displays the cause of trip.	
	Light-alarm	Shows the light-alarm display [L-AL].	
	Running or trip mode	 Trip history: Saves and displays the cause of the last four trips (with a code). Also saves and displays the detailed data recorded on occurrence of the last four trips. 	

Effective function in V/f control
 Effective function in dynamic torque vector control
 Effective function when the slip compensation is made active under V/f control
 Effective function under the V/f control with speed sensor (PG option is necessary.)
 Effective function in dynamic torque vector control with speed sensor. (PG option is necessary.)
 Effective function in vector control with speed sensor
 Effective function in vector control with speed sensor
 Ffective function in vector control with speed sensor
 Ffective function in contro control with speed sensor
 Ffective function in vector control with speed sensor
 Ffective function in the inverters of initial version

Γ

Common Specifications

	Item	Explanation	Remarks
ŀ	Overcurrent protection	The inverter is stopped for protection against overcurrent.	
-	Short circuit protection	The inverter is stopped for protection against overcurrent caused by a short circuit in the output circuit.	0C1,0C2,0C
	Grounding fault protection	• The inverter is stopped for protection against overcurrent caused by a grounding fault in the output circuit. (200V 22kW, 400V 22kW or below)	
ļ		Detecting zero-phase current of output current, the inverter is stopped for protection against overcurrent caused by a grounding fault in the output circuit. (200V 30kW, 400V 30kW or above)	EF
	Overvoltage protection	An excessive voltage (200V series: 400V DC, 400V series: 800V DC) in the DC link circuit is detected and the inverter is stopped. If an excessive voltage is applied by mistake, the protection can not be guaranteed.	0U1,0U2,0L
	Under voltage protection	The voltage drop (200V series: 200V DC, 400V series: 400V DC) in the DC link circuit is detected to stop the inverter. However, the alarm will not be issued when the re-starting after instantaneous stop is selected.	LU
	Input phase loss protection	 The input phase loss is detected to shut off the inverter output. This function protects the inverter. When the load to be connected is small or DC REACTOR is connected a phase loss is not detected. 	Lin
	Output phase loss protection	•Detects breaks in inverter output wining during running, to shut off the inverter output.	OPL
ſ	Overheating protection	·Stop the inverter output detecting excess cooling fan temperature in case of a cooling fan fault or overload.	OH1
		•Stop the inverter output detecting a fault of inner agitating fan. (200V 45kW, 400V 75kW or above)	
		•Stop the inverter output detecting inner temperature of the inverter unit for a cooling fan fault or overload.	OH3
		Protect the braking resistor from over heat by setting the braking resistor electronic thermal function.	dbH
	Overload protection	• Stop the inverter output detecting a cooling unit temperature of the inverter cooling fan and a switching element temperature calculated with the output current.	OLU
-	External alarm input	With the digital input signal (THR) opened, the inverter is stopped with an alarm.	OH2
-	Fuse breaking	•Stop the inverter output detecting the fuse breaking of the main circuit in the inverter. (200V 75kW, 400V 90kW or above)	FUS
-	Charge circuit abnormality	Stop the inverter output detecting the charge circuit abnormality in the inverter. (200V 37kW, 400V 75kW or above)	PbF
-	Brake transistor abnormality	•Stop the inverter detecting the brake transistor abnormality. (DB transistor built-in type only)	dbAL
ł	Over-speed protection *4 to *7	Stop the inverter when the detected speed exceeds 120% of max. output frequency.	OS
-	PG breakwire *4 *5 *7 Electronic thermal	•Stop the inverter detecting the PG breaking.	Pg
		 The inverter is stopped with an electronic thermal function set to protect the motor. Protects the general-purpose motor inverter over all frequency range. (The running level and thermal time constant (0.5 to 75.0 min) can be set.) 	OL1~OL4
	PTC thermistor	•A PTC thermistor input stops the inverter to protect the motor. Connect a PTC thermistor between terminal V2 and 11 and set the switch on control print board and the function code.	OH4
	NTC thermistor	• The NTC thermistor detects a motor temperature. Connect a NTC thermistor between terminal V2 and 11 and set the switch on control print board and the function code.	
	S NTC thermistor breaking	•Stop the inverter output detecting the built-in motor NTC breaking.	nrb
	Overload early warning	Warning signal is output at the predetermined level before stopping the inverter with electronic thermal function.	-
-	Memory error	Data is checked upon power-on and data writing to detect any fault in the memory and to stop the inverter if any.	Er1
	Keypad communication error	The keypad is used to detect a communication fault between the keypad and inverter main body during operation and to stop the inverter.	Er2
ļ	CPU error	Stop the invert detecting a CPU error or LSI error caused by noise.	Er3
	Option communication error	When each option is used, a fault of communication with the inverter main body is detected to stop the inverter.	Er4
-	Option error	When each option is used, the option detects a fault to stop the inverter.	Er5
	Operation error	Store key priority Pressing the store key on the keypad or entering the digital input signal will forcibly decelerate and stop the motor even if the operation command through signal input or communication is selected. Er6 will be displayed after the stop. Start check: If the running command is being ordered when switching the running command method from power-on, alarm reset,	Er6
		or the linked operation, the operation starts suddenly. This function bans running and displays Er6.	
-	Tuning error	Stop the inverter output when tuning failure, interruption, or any fault as a result of tuning is detected during tuning for motor constant.	Er7
-	RS-485 communication error (port1)	When the connection port of the keypad connected via RS485 communication port to detect a communication error, the inverter is stopped and displays an error.	Er8
-	Speed deviation excess *4 to *7	•Stop the inverter output when the speed deviation excesses the specified value (difference between speed command and feedback).	ErE
-	Data save error upon undervoltage	•When the undervoltage protection function works, an alarm is displayed if the data is not properly saved.	ErF
-	RS-485 communication error (port2)	•Stop the inverter output detecting the communication error between the inverter main unit and a mate when the RS-485 connection port of the touch panel is used to configure the network.	ErP
-	Hardware error	•Stop the inverter output detecting the LSI abnormality of the print board for power supply which is mainly caused by noise.	ErH
-	Simulation error	•Simulated alarm is output by the keypad operation.	Err
-	PID feedback breaking detection Alarm relay output	Stop the inverter output detecting a breaking when the input current is allocated to the PID control feedback. (Select valid/invalid.) The relay signal is output when the inverter stops upon an alarm.	CoF
	(for any fault)	•PRG/RESET key is used to reset the alarm stop state.	
$\left \right $	Light-alarm (warning)	•The "light-alarm" display is indicated when alarm or warning matters set as minor troubles occurred. The operation is continued.	L—AL
-		Registration Heat sink overheat (OH1), external alarm(OH2), overheat inside the inverter (OH3), motor overheat (OH4), braking resistor overheat (dbH), motor overload (OL1-OL4), keypad communication error (Er2), optional communication error (Er4), Optional error 8Er5), RS-485 communication error (port1) (Er8), Speed variance (excessive speed deviation) (ErE), RS-485 communication error (port2)(ErP), DC fan lock detection, overload prediction (for motor), cooling fan overheat prediction, life prediction (main circuit capacity capacity, electrolytic capacity on the print board or cooling fan), thermistor detection (PTC), machine life (motor running accumulated time error), machine life (number of starting times error)	
Ē	Stall prevention	•Operates when the inverter output goes beyond the instantaneous overcurrent limiting level, and avoids tripping, during acceleration and constant speed operation.	
ſ	Retry function	•When the motor is tripped and stopped, this function automatically resets the tripping state and restarts operation.	
	Surge protection	•The inverter is protected against surge voltage intruding between the main circuit power line and ground.	
-	Command loss detection	• A loss (breaking, etc.) of the frequency command is detected to output an alarm and the operation is continued at the preset frequency (set at a ratio to the frequency before detection).	
	Momentary power failure	A protective function (inverter stoppage) is activated upon a momentary power failure for 15msec or longer.	
	protection	If restart upon momentary power failure is selected, the inverter restarts upon recovery of the voltage within the set time.	
-	Installation location	Shall be free from corrosive gases, flammable gases, oil mist, dusts, direct sunlight.(Pollution degree 2 (IEC60664-1)). Indoor use only.	
ł	Ambient temperature	- 10 to +50°C (-10 to +40°C when installed side-by-side without clearance (22kW or below))	
+	Ambient humidity	5 to 95% RH (without condensation)	
	Altitude Vibration	•Lower than 1,000m 200V 75kW, 400V 75kW or below 200V 75kW, 400V 90kW or above 3mm : 2 to less than 9Hz, 9.8m/s2 : 9 to less than 20Hz 3mm : 2 to less than 9Hz, 2m/s2 : 9 to less than 55Hz, 1m/s2 : 55 to less than 200Hz	
			1
-	Storage temporature	- 25 to +650	
-	Storage temperature Storage humidity	-25 to +65℃ · 5 to 95% RH (without condensation)	


 \neg

Basic Wiring Diagram

Wiring of main circuit terminal and grounding terminal

Basic wiring diagram

- *1 Install a recommended molded-case circuit breaker (MCCB) or an earth-leakage circuit-breaker (ELCB) (with an overcurrent protection function) in the primary circuit of the inverter to protect wiring. At this time, ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.
- *2 Install a magnetic contactor (MC) for each inverter to separate the inverter from the power supply, apart from the MCCB or ELCB, when necessary.
- *3 Connect this terminal to the power source to maintain the alarm relay output issued by the protective function or to keep displaying the touch panel at the break of inverter main power.
- *4 The auxiliary input is not necessary to be connected generally. Use this when combining the unit such as high power factor power regenerative PWM converter: RHS series (hereafter described as PWM converter).
- *5 Remove the short bar between P1 and P(+) terminals when connecting the DC reactor (DCR) (optional). Be sure to connect the DC reactor since the 55kW motor with LD spec and 75kW or higher motor are equipped with it as the standard accessory. Use the DC reactor when the power supply transformer capacity is 500kVA or higher and is 10 or more times the rated capacity of the inverter, or a thyristors transformer is connected as a load on the same transformer.
 *6 The built-in braking resistor is connected between terminal P(+) and DB in the inverter of 7.5kW or lower models. It is necessary to
- *6 The built-in braking resistor is connected between terminal P(+) and DB in the inverter of 7.5kW or lower models. It is necessary to disconnect the built-in braking resistor when connecting an external braking resistor (optional).
- *7 A grounding terminal for the motor. Connect it as necessary.
- *8 For the control signal wires, use shielded or twisted wires. Ground the shielded wires. To prevent malfunction due to noise, keep the control circuit wiring away from the main circuit wiring as far as possible (recommended: 10cm or more). Never install them in the same wire duct. When crossing the control circuit wiring with the main circuit wiring, set them at right angles.
- *9 Each function assigned for following terminals are set as the factory setting: terminal FWD, REV and X1 to X9 (digital input), terminal Y1 to Y4 (transistor output), and terminal Y5A/C, 30A/B/C (relay output).
 *10 The connector to switch the main circuit. See the User's Manual for the detail.
- *11 Various switches on the control print board, which set inverter operation. See the User's Manual for the detail.

on Specifica

Basic Wiring Diagram

●F codes: Fundamental Functions

Code	Name	Data setting range	Change when running	Data copying	Default setting	Drive V/f	control Vector
F00	Data Protection	 0 : Disable both data protection and digital reference protection 1 : Enable data protection and disable digital reference protection 2 : Disable data protection and enable digital reference protection 3 : Enable both data protection and digital reference protection 	0	0	0	0	0
FOI	Frequency Command 1	 0 : ● / ● keys on keypad 1 : Analog voltage input to terminal [12] (-10 to +10 VDC) 2 : Analog current input to terminal [C1] (4 to 20 mA DC) 3 : Analog sum of voltage and current inputs to terminals [12] and [C1] 5 : Analog voltage input to terminal [V2] (0 to ±10 VDC) 7 : Terminal command UP/DOWN control 8 : ● / ● keys on keypad(balanceless-bumpless switching available) 12 : Pulse train input 	×	0	0	0	0
F02	Operation Method	State of the second distribution of the sec	×	0	2	0	0
F03	Maximum Frequency 1	25.0 to 500.0 Hz	X	0	60.0	0	0
FOH	Base Frequency 1	25.0 to 500.0 Hz	×	0	50.0	0	0
F05	Rated Voltage at Base Frequency 1	0 : Output a voltage in proportion to input An AVR-uncontrolled voltage 80 to 240 V : Output an AVR-controlled voltage(for 200 V class series) 160 to 500 V : Output an AVR-controlled voltage(for 400 V class series)	×	△2	200 400	0	0
F06	Maximum Output Voltage 1	80 to 240 V : Output an AVR-controlled voltage(for 200 V class series) 160 to 500 V : Output an AVR-controlled voltage(for 400 V class series)	×	△2	200 400	0	×
F07	Acceleration Time 1	0.00 to 6000 s	0	0	*1	0	
F08 F09	Deceleration Time 1	Note: Entering 0.00 cancels the acceleration time, requiring external soft-start. 0.0% to 20.0% (percentage with respect to "Rated Voltage at Base Frequency 1")	00	0	*1 *2		×
F 10	Torque Boost 1 Electronic Thermal Overload	1 : For a general-purpose motor with shaft-driven cooling fan	0	$\overline{}$	1	$\overline{}$	ĥ
F 11	Protection for Motor 1 (Select motor characteristics) (Overload detection level)	2 : For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan 0.00: Disable	0		*3		
		1% to 135% of the rated current (allowable continuous drive current) of the motor	0		Ŭ		
F 12	(Thermal time constant)	0.5 to 75.0 min	0	0	*4	0	
F 14	Restart Mode after Momentary	0 : Trip immediately	0	0	1	0	
	Power Failure (Mode selection)	1 : Trip after a recovery from power failure 2 : Trip after decelerate-to-stop 3 : Continue to run, for heavy inertia or general loads 4 : Restart at the frequency at which the power failure occurred, for general loads 5 : Restart at the starting frequency					
F 15	Frequency Limiter (High)		0	0	70.0	0	0
F 16	(Low)	0.0 to 500.0 Hz	0	0	0.0	0	0
F 18	Bias (Frequency command 1)	-100.00% to 100.00%	0	0	0.00	0	0
F20	DC Braking 1 (Braking starting frequency)	0.0 to 60.0 Hz	0	0	0.0	0	0
153	(Braking level)	0% to 100% (HD mode), 0% to 80% (LD mode)	0	0	0	0	0
523	(Braking time)	0.00 (Disable); 0.01 to 30.00 s	0	0	0.00	0	0
<u>F23</u>	Starting Frequency 1	0.0 to 60.0 Hz	0	0	0.5	0	0
F24	(Holding time)	0.00 to 10.00 s	0	0	0.00		
F25	Stop Frequency	0.0 to 60.0 Hz	0		0.2		
F26	Motor Sound (Carrier frequency)	0.75 to 16 kHz (HD-mode inverters with 55 kW or below and LD-mode ones with 22 kW or below) 0.75 to 10 kHz (HD-mode inverters with 75 to 630 kW and LD-mode ones with 30 to 55 kW) 0.75 to 6 kHz (LD-mode inverters with 75 to 630 kW)	0				
F2N	(Tone)	0 : Level 0 (Inactive) 1 : Level 1 2 : Level 2 3 : Level 3	0	0	0	0	×
F29	Terminal [FMA]	0 : Output in voltage (0 to 10 VDC)	0	0	0	0	0
	(Mode selection)	1 : Output in current (4 to 20 mA)					
F 30	(Gain to output voltage)	0% to 300%	0	0	100	0	0
F3 I	(Function)	0 : Output frequency 1 (before slip compensation) 1 : Output frequency 2 (after slip compensation) 2 : Output current	0	0	0	Ó	0
F33	Terminal [FMP] (Pulse rate)	3 : Output voltage 4 : Output torque 5 : Load factor 6 : Consumption power 7 : PID feedback amount 8 : PG feedback value 9 : DC link bus voltage 10 : Universal AO 13 : Motor output 14 : Analog output test (+) 15 : PID command (SV) 16 : PID output (MV) 25 to 6000 p/s (Pulse rate at 100% output)	0	0	1440	0	0
F33 F34	(Gain to output voltage)	0%: Output pulse rate (Fixed at 50% duty)	0	$\overline{}$	0	$\overline{}$	\mathbf{H}
רבי	(Gain to output voltage)	1% to 300%: Voltage output adjustment (Pulse rate fixed at 2000 p/s. Adjust the maximum pulse duty.)	9				
F35	(Function)	0 : Output frequency 1 (before slip compensation) 1 : Output frequency 2 (after slip compensation)	0	0	0	0	0
		2 : Output current 3 : Output voltage 4 : Output torque 5 : Load factor					
		6 : Consumption power 7 : PID feedback amount 8 : PG feedback value					

F codes: Fundamental Functions

0.4	News	Data antiine energy	Change when	Data	Default	Drive o	ontrol
Code	Name	Data setting range	running		setting	V/f	Vector
F35	Terminal [FMP] (Function)	9 : DC link bus voltage	0	0	0	0	\circ
		10 : Universal AO					
		13 : Motor output					
		14 : Analog output test (+)					
		15 : PID command (SV)					
		16 : PID output (MV)					
F37	Load Selection/	0 : Variable torque load	×	0	1		
	Auto Torque Boost/	1 : Constant torque load					
	Auto Energy Saving Operation 1	2 : Auto torque boost					
		3 : Auto energy saving(Variable torque load during ACC/DEC)					
		4 : Auto energy saving(Constant torque load during ACC/DEC)					
		5 : Auto energy saving(Auto torque boost during ACC/DEC)					
F 38	Stop Frequency (Detection mode)	0 : Detected speed	×	0	0	$ \times$	$ \circ $
		1 : Commanded speed					
F 39	(Holding Time)	0.00 to 10.00 s	0	0	0.00	0	0
_ F 40	Torque Limiter 1-1	-300% to 300%; 999 (Disable)	0	0	999	0	0
F41	1-2	-300% to 300%; 999 (Disable)	0	0	999	0	0
F42	Drive Control Selection 1	0 : V/f control with slip compensation inactive	×		0		
		1 : Dynamic torque vector control					
		2 : V/f control with slip compensation active					
		6 : Vector control with speed sensor					
F43	Current Limiter (Mode selection)	0 : Disable (No current limiter works.)	0		2		$ \times$
		1 : Enable at constant speed (Disable during ACC/DEC)					
		2 : Enable during ACC/constant speed operation					
FYY	(Level)	20% to 200% (The data is interpreted as the rated output current of the inverter for 100%.)	0	0	160	0	×
F50	Electronic Thermal Overload	0 (Braking resistor built-in type), 1 to 9000 kWs,	0	∆1∆2	*5	0	0
	Protection for Braking Resistor (Discharging capability)	OFF (Disable)					
1 <u>75 1</u> 1 752	(Allowable average loss)	0.001 to 99.99 kW	0	∆1∆2	0.001	0	0
	(Resistance)	0.01 to 999Ω	0	∆1∆2	0.01	0	0
F80	Switching between HD and LD drive modes	0 : HD (High Duty) mode	×	0	0		0
		1 : LD (Low Duty) mode					

• E codes: Extension Terminal Functions

			Change when	Data	Default	Drive of	control
Code	Name	Data setting range	running		setting	V/f	Vector
E0 1	Terminal [X1] Function	0 (1000) : Select multi-frequency (0 to 1 steps) (SS1)	×	0	0	0	
503	Terminal [X2] Function	1 (1001) : Select multi-frequency (0 to 3 steps) (SS2)	X	ŏ	1	Ĭŏ	Ιŏ
803	Terminal [X3] Function	2 (1002) : Select multi-frequency (0 to 7 steps) (SS4)	X	ŏ	2	Ĭŏ	Ιŏ
804	Terminal [X4] Function	3 (1003) : Select multi-frequency (0 to 15 steps) (SS8)	X	ŏ	3	Ιŏ	ŏ
805	Terminal [X5] Function	4 (1004) : Select ACC/DEC time (2 steps) (RT1)	X	ŏ	4	Ιŏ	ŏ
805	Terminal [X6] Function	5 (1005) : Select ACC/DEC time (4 steps) (RT2)	X	ŏ	5	Ĭŏ	ŏ
807	Terminal [X7] Function	6 (1006) : Enable 3-wire operation (HLD)	X	ĬŎ	6	Ιŏ	Ĭŏ
808	Terminal [X8] Function	7 (1007) : Coast to a stop (BX)	X	ŏ	7	Ιŏ	ŏ
809	Terminal [X9] Function	8 (1008) : Reset alarm (RST)	X	ŏ	8	Ĭŏ	ŏ
	(Function)	9 (1009) : Enable external alarm trip (9 = Active OFF, 1009 = Active ON) (THR)				ŏ	ŏ
	(i dilotion)	10 (1010) : Ready for jogging (JOG)				ŏ	ŏ
		11 (1011) : Select frequency command 2/1 (Hz2/Hz1)				ŏ	ŏ
		12 (1012) : Select motor 2 (M2)				ŏ	ŏ
		13 : Enable DC braking (DCBRK)				ŏ	ŏ
		14 (1014) : Select torque limiter level 2/1 (TL2/TL1)					Iă
		15 : Switch to commercial power (50 Hz) (SW50)		+	+	t-ă-	
		16 : Switch to commercial power (60 Hz) (SW60)			+	000	0 X X
		17 (1017) : UP (Increase output frequency) (UP)			+	t-X-	1-6
		18 (1018) : DOWN (Decrease output frequency) (DOWN)				ŏ	ŏ
		19 (1019) : Enable data change with keypad (WE-KP)				ŏ	ŏ
		20 (1020) : Cancel PID control (Hz/PID)				l ŏ	ŏ
		21 (1021) : Switch normal/inverse operation (IVS)				lŏ.	ŏ
		22 (1021) : Junterlock (IV3)					ŏ
		24 (1024) : Enable communications link via RS-485 or field bus (option) (LE)				l õ	ŏ
		25 (1025) : Universal DI (U-DI)					
					+	+-X-	- ¥
		26 (1026) : Enable auto search for idling motor speed at starting (STM)			+	0 0 0 X 0	0. X. 00-
		30 (1030) : Force to stop (30 = Active OFF, 1030 = Active ON) (STOP)				+	I- <u>2</u>
		32 (1032) : Pre-excitation (EXCITE)			+	+	I- 2
		33 (1033) : Reset PID integral and differential components (PID-RST)					
		34 (1034) : Hold PID integral component (PID-HLD)				0	
		35 (1035) : Select local (keypad) operation (LOC)				0	0 0
		36 (1036) : Select motor 3 (M3)				0	
		37 (1037) : Select motor 4 (M4)				0	Ó
		39			+		- 0 - X - X
		40: Enable integrated sequence to switch to commercial power (50 Hz)(ISW50)			+	F- <u>S</u> -	_ <u>×</u>
		41 Enable integrated sequence to switch to commercial power (60 Hz) (ISW60)				<u>+ -0</u> -	- <u>×</u>
		48 : Pulse train input (available only on terminal [X7] (E07)) (PIN)					O O
		49 (1049) : Pulse train sign (available on terminals except [X7] (E01 to E06, E08 and E09)) (SIGN)					
		72 (1072) : Count the run time of commercial power-driven motor 1 (CRUN-M1)				1_0_	- <u>0</u> - <u>X</u>
		73 (1073) : Count the run time of commercial power-driven motor 2 (CRUN-M2)				0	$\mid \times$
The sha	ded function codes () are applic	able to the quick setup.					

The strated unclose (______) are applicable to the durk setup.
 16.00 s for inverters with a capacity of 22 kW or below, 20.00 s for those with 30 kW or above.
 *2 The factory default differs depending upon the inverter's capacity. See Table 5.1.

Γ

Function Settings

² The factory default differs depending upon the inverters capacity. See Table 5.1.
*3 The motor rated current is automatically set. See Table 5.2 (function code P03).
*4 5.0s min for inverters with a capacity of 22 kW or below; 10.0s min for those with 30 kW or above.
*5 0 for inverters with a capacity of 7.5 kW or below; OFF for those with 0.11 kW or above.
<Data change, reflection and strage> : Not available : After changing data with using & keys, execute and save data by pressing key, After changing and executing data with using & keys, save the data by pressing key.

Function Settings

 \neg

• E codes: Extension Terminal Functions

de	Name	Data setting range	Change when running	Data copying	Default setting	Drive V/f	Contr Vec
<u>99</u>	Terminal [X9] Function	74 (1074) : Count the run time of commercial power-driven motor 3 (CRUN-M3) 75 (1075) : Count the run time of commercial power-driven motor 4 (CRUN-M4) 76 (1076) : Select droop control (DROOP)	X		8		×
		Setting the value of 1000s in parentheses () shown above assigns a negative logic input to a terminal.					
10	Acceleration Time 2	0.00 to 6000 s		00	*1	0	
11 12	Deceleration Time 2 Acceleration Time 3	Note: Entering 0.00 cancels the acceleration time, requiring external soft- start and-stop.	<u> </u>	$\overline{}$	*1	$\overline{}$	+
13	Deceleration Time 3	Start and Stop.	ŏ	ŏ	*1	ŏ	fč
14	Acceleration Time 4		ŏ	ŏ	*1	ŏ	ŤČ
15	Deceleration Time 4		Ō	Ō	*1	Ō	Ċ
16	Torque Limiter 2-1	-300% to 300%; 999 (Disable)	0	0	999	0	C
17	Torque Limiter 2-2	-300% to 300%; 999 (Disable)	0	0	999	0	C
20	Terminal [Y1] Function (Function)	0 (1000) : Inverter running (RUN)	<u>×</u>	0	0	\bigcirc	
21	Terminal [Y2] Function	1 (1001) : Frequency (speed) arrival signal (FAR)		0	1 2		
22 23	Terminal [Y3] Function	2 (1002) : Frequency (speed) detected (FDT) 3 (1003) : Undervoltage detected (Inverter stopped) (LU)	× ×	$\overline{}$	7	$\overline{}$	$+\frac{1}{2}$
24	Terminal [Y4] Function Terminal [Y5A/C] Function	4 (1004) : Torque polarity detected (inverter stopped) (LO)	X	$\overline{}$	15	ŏ	10
27	Terminal [30A/B/C] Function	5 (1005) : Inverter output limiting (IOL)	×	ŏ	99	ŏ	10
	(Relay output)	6 (1006) : Auto-restarting after momentary power failure (IPF)		-		Ō	
		7 (1007) : Motor overload early warning (OL)				0	
		8 (1008) : Keypad operation enabled (KP)				0	
		10 (1010) : Inverter ready to run (RDY)					
		11: Switch motor drive source between commercial power and inverter output (SW88)			+	- 2 -	- - <u>></u>
		12 : Switch motor drive source between commercial power and inverter output (SW52-2)			+	-2-	- - {
		13: Switch motor drive source between commercial power and inverter output (SW52-1) 15 (1015) : Select AX terminal function (For MC on primary side) (AX)			+	00	
		22 (1022) : Inverter output limiting with delay (IOL2)			+	-8-	
		25 (1025) : Cooling fan in operation (FAN)				ŏ	
		26 (1026) : Auto-resetting (TRY)				Ō	
		27 (1027) : Universal DO (U-DO)				0	
		28 (1028) : Heat sink overheat early warning (OH)				0	
		30 (1030) : Lifetime alarm (LIFE)				0	
		31 (1031) : Frequency (speed) detected 2 (FDT2)				Q	
		33 (1033) : Reference loss detected (REF OFF)				0	
		35 (1035) : Inverter output on (RUN2)				0	
		36 (1036) : Overload prevention control(OLP)37 (1037) : Current detected(ID)				8	
		37 (1037) : Current detected (ID) 38 (1038) : Current detected 2 (ID2)				ŏ	
		39 (1039) : Current detected 3 (ID2)				ŏ	
		41 (1041) : Low current detected (IDL)				ŏ	
		42 (1042) : PID alarm (PID-ALM)				ŏ	
		43 (1043) : Under PID control (PID-CTL)				Ō	
		44 (1044) : Motor stopped due to slow flowrate under PID control (PID-STP)				0	
		45 (1045) : Low output torque detected (U-TL)				0	
		46 (1046) : Torque detected 1 (TD1)				0	
		47 (1047) : Torque detected 2 (TD2)				0	
		48 (1048) : Motor 1 selected (SWM1)				$\left \begin{array}{c} \circ \\ \circ \end{array} \right $	
		49 (1049) : Motor 2 selected (SWM2)					
		50 (1050) : Motor 3 selected (SWM3)					
		51 (1051) : Motor 4 selected (SWM4) 52 (1052) : Running forward (FRUN)				l õ	
		53 (1053) : Running reverse (RRUN)				ŏ	
		54 (1054) : In remote operation (RMT)				ŏ	
		56 (1056) : Motor overheat detected by thermistor (THM)				Õ	
		57 (1057) : Brake signal (BRKS)				Ó	
		58 (1058) : Frequency (speed) detected 3 (FDT3)				0	
		59 (1059) : Terminal [C1] wire break (C1OFF)				0	
		70 (1070) : Speed valid (DNZS)				×	
		71 (1071) : Speed agreement (DSAG)			+	+ - <u>~</u> -	
		72 (1072) : Frequency (speed) arrival signal 3 (FAR3) 76 (1076) : PG error detected (PG-ERR)			+	×	
		84 (1084) : Maintenance timer (MNT)			+	- 6 -	
		98 (1098) : Light alarm (L-ALM)				ŏ	
		99 (1099) : Alarm output (for any alarm) (ALM)				ŏ	
		105 (1105): Braking transistor broken (DBAL)				ŏ	
		Setting the value of 1000s in parentheses () shown above assigns a negative logic input to a terminal.					
3	Frequency Arrival (Detection width)						
1		0.0 to 500.0 Hz	0	0	2.5	0	(
2	(Hysteresis width)		0	0	60.0	0	(
4		0.00 (Disable); Current value of 1% to 200% of the inverter rated current		0	1.0	0	
5		0.01 to 600.00s 0.0 to 500.0Hz	<u> </u>	∆1∆2 ○	*3 10.00	0	
5 7	Frequency Detection 2 (Level) Current Detection 2/ (Level)	0.00 (Disable); Current value of 1% to 200% of the inverter rated current	$\overline{}$	$\overline{}$	60.0	$\overline{}$	
			<u> </u>	$\triangle 1 \triangle 2$	*3	$\overline{}$	+
	PID Display Coefficient A	-999 to 0.00 to 9990	<u> </u>	0	10.00	ŏ	
	PID Display Coefficient B	-999 to 0.00 to 9990	ŏ	ŏ	100	ŏ	
Ż	LED Display Filter	0.0 to 5.0 s	ŏ	ŏ	0.00	ŏ	(
	LED Monitor (Item selection)		0	0	0.5	0	
	(3 : Output current	Ō	Ō	0	Ō	
		4 : Output voltage					
		8 : Calculated torque 9 : Consumption power					

Code	Name	Data setting range	Change when running		Default setting	Drive V/f	control Vector
43	LED Monitor (Item selection)	12 : PID feedback amount 14 : PID output	0	0	0	0	0
		15 : Load factor					
		16 : Motor output					
		17 : Analog input					
		23 : Torque current (%)					
		24 : Magnetic flux command (%)					
ЕЧЧ	(Display when stopped)	25 : Input watt-hour 0 : Specified value	0	0	0	0	0
	(Display when stopped)	1 : Output value			0	0	
545	LCD Monitor (Item selection)		0		0	0	0
		1 : Bar charts for output frequency, current and calculated torque			Ť		
548	(Language selection)		0	0	0	0	0
		1 : English					
		2 : German					
		3 : French					
		4 : Spanish 5 : Italian					
ЕЧТ	(Contrast control)		0		5	0	0
548	LED Monitor (Speed monitor item)		Ŏ	ĬŎ	0	ŏ	ŏ
	, , ,	1 : Output frequency (After slip compensation)			(Japan)		
		2 : Reference frequency			2		
		3 : Motor speed in r/min			(Asia)		
		4 : Load shaft speed in r/min					
		5 : Line speed in m/min					
850	Coefficient for Speed Indication	7 : Display speed in % 0.01 to 200.00	0		30.00	0	0
ES 1		0.000 (Cancel/reset), 0.001 to 9999	1 ŏ	1 ŏ	0.010	ŏ	ŏ
852	Keypad (Menu display mode)		ŏ	ĬŎ	0	ŏ	ŏ
		1 : Function code data check mode (Menu #2 and #7)	_	_			_
		2 : Full-menu mode					
854		0.0 to 500.0 Hz	0	0	60.0	0	0
<u>ESS</u>		0.00 (Disable); Current value of 1% to 200% of the inverter rated current	0	1_2_	*3	0	0
<u>858</u>	× /	0.01 to 600.00 s	0		10.00	0	0
<u>881</u>		0 : None	×		0	00	
<u>882</u> 883	Terminal [C1] Extended Function Terminal [V2] Extended Function	1 : Auxiliary frequency command 1 2 : Auxiliary frequency command 2	$\stackrel{\frown}{\times}$	\vdash	0	$\overline{}$	$\overline{}$
.05		3 : PID command 1					
		5 : PID feedback amount				0	0
		6 : Ratio setting					
		7 : Analog torque limit value A					
		8 : Analog torque limit value B					
		20 : Analog input monitor					
884	Saving of Digital Reference Frequency	0 : Automatic saving (when main power is turned OFF)	0		1	0	0
885	Reference Loss Detection (Continuous running frequency)	1 : Saving by pressing 😂 key 0 : Decelerate to stop, 20% to 120%, 999: Disable			999	0	0
E 78		0% to 300%	1 ŏ	۲ŏ	100	ŏ	ŏ
E 79		0.01 to 600.00 s	ŏ	Ιŏ	10.00	ŏ	ŏ
80		0% to 300%	0	0	20	0	0
E8 I.	Low Torque Detection (Timer)	0.01 to 600.00 s	0	0	20.00	0	0
E 98	Terminal [FWD] Function	0 (1000) : Select multi-frequency (0 to 1 steps) (SS1)	×	0	98	0	0
899	Terminal [REV] Function	1 (1001) : Select multi-frequency (0 to 3 steps) (SS2)		0	99	0	0
		2 (1002) : Select multi-frequency (0 to 7 steps) (SS4)				0	
		3 (1003) : Select multi-frequency (0 to 15 steps) (SS8) 4 (1004) : Select ACC/DEC time (2 steps) (RT1)				Ő	8
		5 (1005) : Select ACC/DEC time (2 steps) (RT1)				ŏ	ŏ
		6 (1006) : Enable 3-wire operation (HLD)				ŏ	ŏ
		7 (1007) : Coast to a stop (BX)				Õ	Õ
		8 (1008) : Reset alarm (RST)				0	Ō
		9 (1009) : Enable external alarm trip(9 = Active OFF, 1009 = Active ON) (THR)				0	0
		10 (1010) : Ready for jogging (JOG)				Q	Q
		11 (1011) : Select frequency command 2/1 (Hz2/Hz1)				0	O O
		12 (1012) : Select motor 2 (M2)				0	00
		13 : Enable DC braking (DCBRK) 14 (1014) : Select torque limiter level 2/1 (TL2/TL1)				0	
		15 :Switch to commercial power (50 Hz) (SW50)		+	+ +		
				+	+		- x -
		16 Switch to commercial power (60 Hz) (SW60) 17 (1017) : UP (Increase output frequency) (UP)		+		0	- ō-
		16 :Switch to commercial power (60 Hz) (SW60)				00	0 X X 0 0
		16 :Switch to commercial power (60 Hz) (SW60) 17 (1017) : UP (Increase output frequency) (UP) 18 (1018) : DOWN (Decrease output frequency) (DOWN) 19 (1019) : Enable data change with keypad (WE-KP)				000	0
		16 :Switch to commercial power (60 Hz) (SW60) 17 (1017) : UP (Increase output frequency) (UP) 18 (1018) : DOWN (Decrease output frequency) (DOWN) 19 (1019) : Enable data change with keypad (WE-KP) 20 (1020) : Cancel PID control (Hz/PID)				0000	00
		16 :Switch to commercial power (60 Hz) (SW60) 17 (1017) : UP (Increase output frequency) (UP) 18 (1018) : DOWN (Decrease output frequency) (DOWN) 19 (1019) : Enable data change with keypad (WE-KP) 20 (1020) : Cancel PID control (HZ/PID) 21 (1021) : Switch normal/inverse operation (IVS)				00000	000
		16 :Switch to commercial power (60 Hz) (SW60) 17 (1017) : UP (Increase output frequency) (UP) 18 (1018) : DOWN (Decrease output frequency) (DOWN) 19 (1019) : Enable data change with keypad (WE-KP) 20 (1020) : Cancel PID control (Hz/PID) 21 (1021) : Switch normal/inverse operation (IVS) 22 (1022) : Interlock (IL)				000000	0000
		16 :Switch to commercial power (60 Hz) (SW60) 17 (1017) : UP (Increase output frequency) (UP) 18 (1018) : DOWN (Decrease output frequency) (DOWN) 19 (1019) : Enable data change with keypad (WE-KP) 20 (1020) : Cancel PID control (HZ/PID) 21 (1021) : Switch normal/inverse operation (IVS)				00000	000

•E codes: Extension Terminal Functions

The shaded function codes () are applicable to the quick setup. *1 6.00 s for inverters with a capacity of 22 kW or below; 20.00 s for those with 30 kW or above.

* 3 The motor rated current is automatically set. See Table 5.2 (function code POS).
<Data change, reflection and strage> X: Not available : After changing data with using Sekeys, execute and save data by pressing key, After changing and executing data with using Sekeys, save the data by pressing key.

Γ

Function Settings

•E codes: Extension Terminal Functions

Code	Name	Data setting range	Change when	Data	Default	Drive of	control
Code	Name	Data setting range	running	copying	setting	V/f	Vector
E 9 9	Terminal [REV] Function	30 (1030) : Force to stop ((30 = Active OFF, 1030 = Active ON) (STOP)	X		99		0
		32 (1032) : Pre-excitation (EXCITE)				×	0
		33 (1033) : Reset PID integral and differential components (PID-RST)					
		34 (1034) : Hold PID integral component (PID-HLD)					0
		35 (1035) : Select local (keypad) operation (LOC)					0
		36 (1036) : Select motor 3 (M3)					0
		37 (1037) : Select motor 4 (M4)					0
		39 : Protect motor from dew condensation (DWP)		L	L		
		40: Enable integrated sequence to switch to commercial power (50 Hz) (ISW50)	L	L		X
		41 Enable integrated sequence to switch to commercial power (60 Hz) (ISW60)	L	L		\times
		49 (1049) : Pulse train sign (SIGN)		L	L		
		72 (1072) : Count the run time of commercial power-driven motor 1 (CRUN-M1)		L	L		_ ×_
		73 (1073) : Count the run time of commercial power-driven motor 2 (CRUN-M2)		L	L		X
		74 (1074) : Count the run time of commercial power-driven motor 3 (CRUN-M3		L	L		×
		75 (1075) : Count the run time of commercial power-driven motor 4 (CRUN-M4)		L	L		\times
		76 (1076) : Select droop control (DROOP)	L	L	L		_X_
		98 : Run forward (FWD)					0
		99 : Run reverse (REV)					
		Setting the value of 1000s in parentheses () shown above assigns a negative logic input to a terminal.					

C codes: Control Functions of Frequency

• •		_	Change when	Data	Default	Drive of	control
Code	Name	Data setting range	running	copying	setting	V/f	Vector
E0 I	Jump Frequency 1	0.0 to 500.0 Hz		0	0.0	0	0
503	2		ŤÕ	ŏ	0.0	Õ	ŤŎ
603	3		Ŏ	Ŏ	0.0	Õ	Ŏ
604		0.0 to 30.0 Hz	Ō	Ŏ	3.0	Õ	Ŏ
COS	Multi-frequency 1	0.00 to 500.00 Hz	Ō	Ō	0.00	Ō	Ō
<i>E05</i>	2		0	0	0.00	0	$\overline{0}$
607	3			0	0.00	0	$\overline{\mathbf{O}}$
<i>C08</i>	4			0	0.00	0	0
609	5		0	0	0.00	0	0
E 10	6		0	0	0.00	0	0
E 11	7		0	0	0.00	0	0
512	8		0	0	0.00	0	0
E 13	9		0	0	0.00	0	0
E 14	10		0	0	0.00	0	0
E 15	11		0	0	0.00	0	0
E 18	12		0	0	0.00	0	0
E 17	13		0	0	0.00	0	0
E 18	14		0	0	0.00	0	0
E 19	15		0	0	0.00	0	0
	Jogging Frequency	0.00 to 500.00 Hz	0	0	0.00	0	0
C 30	Frequency Command 2	0 : Enable 🔕 / 🛇 keys on the keypad	X		2	0	0
		1 : Analog voltage input to terminal [12] (-10 to +10 VDC)					
		2 : Analog current input to terminal [C1] (4 to 20 mA DC)					
		3 : Analog sum of voltage and current inputs to terminals [12] and [C1]					
		5 : Analog voltage input to terminal [V2] (0 to 10 VDC)					
		7 : Terminal command UP/DOWN control					
		8 : Enable					
		12 : Pulse train input					
637		-5.0% to 5.0%	0		0.0	0	
632		0.00% to 200.00%	0		100.0	0	0
633	(Filter time constant)		0	0	0.05	0	0
634	(Gain base point)	0.00% to 100.00%	0	0	100.00	0	0
C 35	(Polarity)		×		1	\circ	$ \circ \rangle$
		1 : Unipolar					
638	Analog Input Adjustment for [C1] (Offset)	-5.0% to 5.0%	0		0.0	0	\Box
637		0.00% to 200.00%	0	0	100.00	0	0
E 38	(Filter time constant)	0.00 to 5.00s	0	0	0.05	0	0
639	(Gain base point)	0.00% to 100.00%	0	0	100.00	0	0
	Analog Input Adjustment for [V2] (Offset)	-5.0% to 5.0%	0	0	0.0	0	0
642	(Gain)	0.00% to 200.00%	0	0	100.00	0	0
643	(Filter time constant)		0	0	0.05	0	0
644	(1)	0.00% to 100.00%	0		100.00	0	
645	(Polarity)	0 : Bipolar 1 : Unipolar	×		1	0	0
650	Bias(Frequency command 1)(Bias base point)		0	0	0.00	0	$\overline{\mathbf{b}}$
250	Bias(Frequency command 1)(Bias base point) Bias(PID command 1) (Bias value)	-100 00% to 100 00%			0.00	$\overline{}$	$\stackrel{\circ}{\vdash}$
252	Dias(FID command I) (Bias Value)	-100.00% to 100.00%			0.00	$\overline{}$	$\overline{10}$
	(Blas base point) Selection of Normal/Inverse Operation	0 : Normal operation		$\overline{0}$	0.00	$\overline{0}$	
600	(Frequency command 1)				0	\cup	

The shaded function codes (
) are applicable to the quick setup.
*2 The factory default differs depending upon the inverter's capacity. See Table 5.1.
*6 The motor constant is automatically set, depending upon the inverter's capacity. See Table 5.2.
<Data change, reflection and strage> : Not available : After changing data with using @ keys, execute and save data by pressing #key, . After changing and executing data with using @ keys, save the data by pressing #key.

ſ

•P codes: Motor 1 Parameters

0.1	News	Data antiing service	Change when	Data	Default	Drive	control
Code	Name	Data setting range	running	copying	setting	V/f	Vector
P0 1	Motor 1 (No. of poles)		X	∆1∆2	4	0	0
<i>P02</i>	(Rated capacity)	0.01 to 1000 kW (when P99 = 0, 2, 3 or 4)	X	$\triangle 1 \triangle 2$	*6	0	0
		0.01 to 1000 HP (when P99 = 1)					
P03	(Rated current)	0.00 to 2000 A	X	△1△2	*6	0	0
PD4	(Auto-tuning)	0 : Disable	×	×	0	0	0
		1 : Tune while the motor stops. (%R1, %X and rated slip frequency)					
		2 : Tune while the motor is rotating under V/f control(%R1, %X, rated slip frequency, no-load current,					
		magnetic saturation factors 1 to 5, and magnetic saturation extension factors "a" to "c")					
		3 : Tune while the motor is rotating under vector control(%R1, %X, rated slip frequency, no-load current, magnetic					
		saturation factors 1 to 5, and magnetic saturation extension factors "a" to "c." Available when the vector control is enabled.)					
P05	Motor 1 (No-load current)		×	∆1∆2	*6	0	0
PD 7	(%R1)	0.00% to 50.00%	0	$\triangle 1 \triangle 2$	*6	0	0
P08	(%X)	0.00% to 50.00%	0	△1△2	*6	0	0
<i>P09</i>	(Slip compensation gain for driving)		0	0	100.0	0	0
P 10	(Slip compensation response time)	0.01 to 10.00 s	0	△1△2	0.12	0	\times
P 11	(Slip compensation gain for braking)	0.0% to 200.0%	0	0	100.0	0	0
P 12	(Rated slip frequency)	0.00 to 15.00 Hz	\times	$\triangle 1 \triangle 2$	*6	0	0
P 13	(Iron loss factor 1)	0.00% to 20.00%	0	$\triangle 1 \triangle 2$	*6	0	0
P 14	(Iron loss factor 2)	0.00% to 20.00%	0	$\triangle 1 \triangle 2$	0.00	0	0
P 15	(Iron loss factor 3)	0.00% to 20.00%	0	△1△2	0.00	0	0
P 16	(Magnetic saturation factor 1)	0.0% to 300.0%	0	$\triangle 1 \triangle 2$	*6	0	0
P 17	(Magnetic saturation factor 2)	0.0% to 300.0%	0	△1△2	*6	0	0
P 18	(Magnetic saturation factor 3)	0.0% to 300.0%	0	$\triangle 1 \triangle 2$	*6	0	0
P 19	(Magnetic saturation factor 4)	0.0% to 300.0%	0	∆1∆2	*6	0	0
P20	(Magnetic saturation factor 5)	0.0% to 300.0%	0	△1△2	*6	0	0
159			0	∆1∆2	*6	0	0
559	(Magnetic saturation extension factor "b")		0	△1△2	*6	\circ	0
P23	(Magnetic saturation extension factor "c")	0.0% to 300.0%	0	$\triangle 1 \triangle 2$	*6	0	0
P53	(%X correction factor 1)	0% to 300%	0	△1△2	100	0	0
<i>P</i> 54	(%X correction factor 2)		0	$\triangle 1 \triangle 2$	100	0	0
<i>P</i> SS	(Torque current under vector control)	0.00 to 2000 A	×	$\triangle 1 \triangle 2$	*6	\times	0
<i>P</i> 58	(Induced voltage factor under vector control)		×	△1△2	85	Х	0
P99	Motor 1 Selection	0 : Motor characteristics 0 (Fuji standard motors, 8-series)	×	△1△2	0	0	0
		1 : Motor characteristics 1 (HP rating motors)					
		2 : Motor characteristics 2 (Fuji motors exclusively designed for vector control)					
		3 : Motor characteristics 3 (Fuji standard motors, 6-series)					
		4 : Other motors					

H codes: High Performance Functions

Initialization 0 Disable initialization 0 Disable initialization X X 0 0 1 initialization 1 initialization X X 0 0 0 1 initialization 1 initialization X X 0 0 0 2 initialization 1 initialization X X 0	Code	Nome	Data antiting range	Change when	Data	Default	Drive	control
1: Initialize all function code data to the factory defaults 1: Initialize and function code data to the factory defaults 2: Initialize motor 2 parameters 3: Initialize motor 3 parameters 4: Initialize motor 3 parameters 0 4: Initialize motor 4 parameters 0 6: Initialize motor 4 0 6: Initalize motore 4 0 <t< th=""><th>Code</th><th>Name</th><th>Data setting range</th><th>running</th><th>copying</th><th>setting</th><th>V/f</th><th>Vector</th></t<>	Code	Name	Data setting range	running	copying	setting	V/f	Vector
2: Initialize motor 1 parameters 3: Initialize motor 2 parameters 4: Initialize motor 3 parameters 0 H24 Auto-reset (Times) H25 Cooling Fan ON/OFF Control 0: Bisable (1 to 10 H26 Cooling Fan ON/OFF Control 0: Bisable (Always in operation) 0 0 H27 Acceleration/Deceleration Pattern 0 0 0 0 H27 Acceleration/Deceleration Pattern 0: Insart 0 0 0 0 H28 Rotational Direction Limitation 0: Bisable (Always in operation) 0 0 0 0 0 H28 Rotational Direction Limitation 0: Bisable 0	ноз	Data Initialization	0 : Disable initialization	X	×	0	0	0
4: Initialize motor 2 parameters 4: Mathematics 4: Mathematics <tr< td=""><td></td><td></td><td>1 : Initialize all function code data to the factory defaults</td><td></td><td></td><td></td><td></td><td></td></tr<>			1 : Initialize all function code data to the factory defaults					
4: Initialize motor 3 parameters 4: Initialize motor 4 parameters H24 Auto-reset (Times) 0: Disable; 1 to 10 0 0 0 H25 (Reset interval) 0.5 to 20.0 s 0 0 0 0 0 H25 Coling Fan ON/OFF Control 0: Disable (Always in operation) 0			2 : Initialize motor 1 parameters					
4: Initialize motor 3 parameters 4: Initialize motor 4 parameters H24 Auto-reset (Times) 0: Disable; 1 to 10 0 0 0 H25 (Reset interval) 0.5 to 20.0 s 0 0 0 0 0 H25 Coling Fan ON/OFF Control 0: Disable (Always in operation) 0			3 : Initialize motor 2 parameters					
H2F Atto-reset (Times) 0: Disable: 1 to 10 0 0 0 H25 (Reset interval) 0.5 to 20.0 s 0 5.0 0			4 : Initialize motor 3 parameters					
H35 (Reset interval) 0.5 to 20.0 s 0 5.0 0 H35 Cooling Fan ON/OFF Control 0 : Disable (Always in operation) 0			5 : Initialize motor 4 parameters					
H25 Ceoling Fan ON/OFF Control 0.5 to 20.0 s 0 0 0 0 0 H25 Cooling Fan ON/OFF Control 0 1 Enable (Always in operation) 0	НОЧ	Auto-reset (Times)	0 : Disable; 1 to 10	0	0	0	0	0
H05 Cooling Fan ON/OFF Control 0 Disable (Always in operation) 0 <td></td> <td>(Reset interval)</td> <td>0.5 to 20.0 s</td> <td>0</td> <td>0</td> <td>5.0</td> <td>0</td> <td>0</td>		(Reset interval)	0.5 to 20.0 s	0	0	5.0	0	0
HB7 Acceleration/Deceleration Pattern 0 1: Enable (ON/OFF controllable) HB7 Acceleration/Deceleration Pattern 0 1: Enable 0 0 0 0 HB7 Acceleration/Deceleration Pattern 0 1: Enable (New (Neak)) 2: S-curve (Weak) 2: S-curve (Weak) 2: S-curve (Weak) 0	H05		0 : Disable (Always in operation)	0	0	0	0	0
Hobbitation boots attern attern 1: S-curve (Weak) 2: S-curve (Arbitrary, according to H57 to H60 data) H3B Rotational Direction Limitation 0: Disable X 0 0 H3B Rotational Direction Limitation 0: Disable X 0 0 0 H3B Rotational Direction Limitation 0: Disable X 0 0 0 X H3B Starting Mode (Auto search) 0: Disable X 0 0 X H3D Deceleration Mode 0: Normal deceleration 1: Coast-to-stop 0 0 0 0 0 H11 Deceleration Mode 0: Normal deceleration 1: Coast-to-stop 0 <td></td> <td>g</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>		g		-	-			
H3 Rotational Direction Limitation 0	нол	Acceleration/Deceleration Pattern	0 : Linear	0	0	0	0	0
HBB Rotational Direction Limitation 3 : Curvilinear K O O HBB Rotational Direction Limitation 0 : Disable X O O O HBB Starting Mode (Auto search) 0 : Disable X O O O HBS Starting Mode (Auto search) 0 : Disable X O O O HBB Operating after instantaneous stop only) 2 : Enable (Normal start and starting after instantaneous stop only) O O O H11 Deceleration Mode 0 : Normal deceleration 1: Coast-to-stop O O O O H11 Deceleration Mode 0 : Normal deceleration 1: Coast-to-stop O O O O H12 Instantenus Overumer Limiting (Mode selection) 0 : 1o 10.0 s O O O O O H12 Instantenus Overumer Limiting Idvert Ime O.10 s O O O O O O H12 Instantenus Overumer Limiting Idvert Ime O.0 to 30.0 s 999 : Follow the current limit command O O O O O			1 : S-curve (Weak)					
H3B Rotational Direction Limitation 0 : Disable X 0 0 0 H3B Rotational Direction Limitation 1 : Enable (Reverse rotation inhibited) X 0 0 0 X H3B Starting Mode (Auto search) 0 : Disable X 0 0 X H3B Starting Mode (Auto search) 0 : Disable X 0 0 X H11 Deceleration Mode 0 : Normal deceleration 1: Coast-to-stop 0 0 0 0 H11 Deceleration Mode 0 : Normal deceleration 1: Coast-to-stop 0 0 0 0 H12 Itstantaneous Overurent Limiting Mode selection 0 : Disable 0 1 0 X H12 Restart Mode after Momentary (Restartime Power Failure (Frequency fail rate) 0.01 to 10.0 0			2 : S-curve (Arbitrary, according to H57 to H60 data)					
How the biological binder b			3 : Curvilinear					
Image: starting Mode 2 : Enable (Forward rotation inhibited) Image: starting Mode Auto search) 0 : Disable X 0 0 X H33 Starting Mode (Auto search) 0 : Disable X 0 0 X 0 0 X H11 Deceleration Mode 0 : Normal deceleration 1: Coast-to-stop 0 0 0 0 0 H12 Instantaneous Overurent Limiting (Mode selection) 0 : Disable 0 0 1 X 1 H13 Restart Mode after Momentary (Restartime) 0.1 to 10.0 s 0 1 0 X 999 X H14 Instantaneous Overurent Limiting (Mode selection) 0.1 to 10.0 s 0 1 0 X 1 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X	H08	Rotational Direction Limitation	0 : Disable	X	0	0	0	0
Image: starting Mode 2 : Enable (Forward rotation inhibited) Image: starting Mode Auto search) 0 : Disable X 0 0 X H33 Starting Mode (Auto search) 0 : Disable X 0 0 X 0 0 X H11 Deceleration Mode 0 : Normal deceleration 1: Coast-to-stop 0 0 0 0 0 H12 Instantaneous Overurent Limiting (Mode selection) 0 : Disable 0 0 1 X 1 H13 Restart Mode after Momentary (Restartime) 0.1 to 10.0 s 0 1 0 X 999 X H14 Instantaneous Overurent Limiting (Mode selection) 0.1 to 10.0 s 0 1 0 X 1 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X			1 : Enable (Reverse rotation inhibited)		-			
HD3 Starting Mode (Auto search) 0 : Disable X 0 0 X 1 Enable (Starting after instantaneous stop only) 2 : Enable (Normal start and starting after instantaneous stop only) 0 0 0 0 H11 Deceleration Mode 0 : Normal deceleration 1: Coast-to-stop 0 0 0 0 0 H12 Instantaneous Overurent Limiting (Mode selection) 0 : Disable 0 0 1 0 X H13 Restart Mode after Momentary (Restart time) 0.1 to 10.0 s 0								
H11 Deceleration Mode 1: Enable (Starting after instantaneous stop only) 0 0 0 H11 Deceleration Mode 0: Normal deceleration 1: Coast-to-stop 0 0 0 H12 Instantaneous Overument Limiting (Mode selection) 0: Disable 0 1 0 0 H13 Restart Mode after Momentary (Restart time) 0.1 to 10.0 s 0 0 0 0 0 H13 Restart Mode after Momentary (Restart time) 0.1 to 10.0 s 0	<i>HD9</i>	Starting Mode (Auto search)		X	0	0	0	×
H II Deceleration Mode 0 : Normal deceleration 1: Coast-to-stop 0 0 0 H I2 Instantaneous Overcurrent Limiting (Mode selection) 0 : Disable 1 1 X H I3 Restart Mode after Momentary (Restart lime) 0.1 to 10.0 s 1 X X H I3 Restart Mode after Momentary (Restart lime) 0.1 to 10.0 s 1 X X Power Failure (Frequency fall rate) 0.00: Deceleration time selected, 0.01 to 100.00 Hz/s, 9999 999 X 999 999 X 999: Follow the current limit command 0.00: Deceleration time selected, 0.01 to 10.00 Hz/s, 9999 0 X 2235 0 (Continuous running level) 200 to 300 V for 200 V class series 22 235 0 400 to 600 V for 400 V class series 470 470 H I5 (Allowable momentary power failure time) 0.0 to 30.0 s 999: Automatically determined by inverter 999 0 <		, , , , , , , , , , , , , , , , , , ,	1 : Enable (Starting after instantaneous stop only)		-			
H II Deceleration Mode 0 : Normal deceleration 1: Coast-to-stop 0 0 0 H I2 Instantaneous Overcurrent Limiting (Mode selection) 0 : Disable 1 1 X H I3 Restart Mode after Momentary (Restart lime) 0.1 to 10.0 s 1 X X H I3 Restart Mode after Momentary (Restart lime) 0.1 to 10.0 s 1 X X Power Failure (Frequency fall rate) 0.00: Deceleration time selected, 0.01 to 100.00 Hz/s, 9999 999 X 999 999 X 999: Follow the current limit command 0.00: Deceleration time selected, 0.01 to 10.00 Hz/s, 9999 0 X 2235 0 (Continuous running level) 200 to 300 V for 200 V class series 22 235 0 400 to 600 V for 400 V class series 470 470 H I5 (Allowable momentary power failure time) 0.0 to 30.0 s 999: Automatically determined by inverter 999 0 <								
H12 Instantaneous Overcurrent Limiting (Mode selection) ender the formation of the formatio	811	Deceleration Mode		0	0	0	0	0
H 13Restart Mode after Momentary (Restart time) 0.0 to 10.0 s0.1 to 10.0 s $\land 1 \land 2$ $?2$ \bigcirc H 14Power Failure (Frequency fall rate) 999: Follow the current limit command \bigcirc $\land 1 \land 2$ $?2$ \bigcirc \bigcirc H 15(Continuous running level) 400 to 600 V for 200 V class series 400 to 600 V for 400 V class series 400 to 600 V			0 : Disable	Ō	Ō	1	Ō	×
H 14 Power Failure (Frequency fall rate) 0.00: Deceleration time selected, 0.01 to 100.00 Hz/s, 999; Follow the current limit command 0 999 0 X H 15 (Continuous running level) 200 to 300 V for 200 V class series 0 22 235 0 H 15 (Allowable momentary power failure time) 0.00 to 600 V for 400 V class series 470 470 H 15 (Allowable momentary power failure time) 0.0 to 30.0 s 999: Automatically determined by inverter 0 999 0 0 H 25 Thermistor (for motor) 0 : Disable 0 </td <td></td> <td>,</td> <td>1 : Enable</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		,	1 : Enable		-			
H 19 Power Failure (Frequency fall rate) 0.00: Deceleration time selected, 0.01 to 100.00 Hz/s, 999 0 999 0 X H 15 (Continuous running level) 200 to 300 V for 200 V class series 0 22 235 0 0 H 15 (Allowable momentary power failure time) 0.0 to 30.0 s 999: Automatically determined by inverter 0 999 0 0 0 H 25 Thermistor (for motor) 0: Disable 0<	H 13	Restart Mode after Momentary (Restart time)	0.1 to 10.0 s	0	$\triangle 1 \triangle 2$	*2	0	
999: Follow the current limit command Image: Continuous running level 999: Follow the current limit command Image: Continuous running level 999: Follow the current limit command Image: Continuous running level Image: Continuous running level 999: Follow the current limit command Image: Continuous running level			0.00: Deceleration time selected, 0.01 to 100.00 Hz/s,	0	0	999	0	×
H15 (Allowable momentary power failure time) 0.0 to 600 V for 400 V class series 470 H15 (Allowable momentary power failure time) 0.0 to 30.0 s 999: Automatically determined by inverter 999 999 H25 Thermistor (for motor) 0: Disable 0 0 0 0 H25 Thermistor (for motor) 0: Disable 0 0 0 0 1: PTC (The inverter insues output signal THM and continues to run.) 3: NTC (When connected) 0 0.00 X H27 (Level) 0.00 to 5.00 V 0 0 0 X H28 Droop Control 60.0 to 0.0 Hz 0 0 X H30 Communications Link Function (Mode selection) Frequency command Run command 0 0 0 X H30 Communications Link Function (Mode selection) 0: F01/C30 F02 1 1: RS-485 (Port 1) 4 4 4 4 1: RS-485 (Port 1) F02 2: F01/C30 RS-485 (Port 1) 4 4 4 4 4 4 H330 Communications Link Function S: RS-485 (Port 1) </td <td></td> <td>· · · · · · · · · · · ·</td> <td>999: Follow the current limit command</td> <td></td> <td></td> <td></td> <td></td> <td></td>		· · · · · · · · · · · ·	999: Follow the current limit command					
H 15 (Allowable momentary power failure time) 0.0 to 30.0 s 9999: Automatically determined by inverter 0 999 0 H25 Thermistor (for motor) 0: Disable 0: Disable 0 <td>H 15</td> <td>(Continuous running level)</td> <td>200 to 300 V for 200 V class series</td> <td>0</td> <td>△2</td> <td>235</td> <td>0</td> <td>0</td>	H 15	(Continuous running level)	200 to 300 V for 200 V class series	0	△2	235	0	0
H25 Thermistor (for motor) (Mode selection) 0 : Disable 0 : Disable 0 : Disable 1 : PTC (The inverter immediately trips with DH4 displayed.) 2 : PTC (The inverter issues output signal THM and continues to run.) 3 : NTC (When connected) 0 : Disable 0 : Disable H27 (Level) 0.00 to 5.00 V 0 : Disable 0 : Disable H28 Droop Control 60.0 to 0.0 Hz 0 : Disable 0 : Disable H30 Communications Link Function (Mode selection) Frequency command 0 : F01/C30 Fu2 Fu2 1 : RS-485 (Port 1) 0 : O : O 0 : O 1 : RS-485 (Port 1) F02 2 : F01/C30 RS-485 (Port 1) Fu2 2 : F01/C30 Image: Control 1 Image: Control 1 Image: Control 1 1 : RS-485 (Port 1) F02 5 : RS-485 (Port 2) Fu2 5 : RS-485 (Port 1) Image: Control 1 Image: Control 1 Image: Control 1 2 : F01/C30 RS-485 (Port 1) RS-485 (Port 1) Image: Control 1 Image: Control 1 Image: Control 1 Image: Control 1 3 : RS-485 (Port 2) F02 5 : RS-485 (Port 2) F02 5 : RS-485 (Port 1) Image: Control 1 Image: Control 1 Image: Control 1 4 : RS-485 (Port 2) F02 5 : RS-485 (Port 2) F02 5 : RS-485 (Port 2) Image: Control 1 <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>400 to 600 V for 400 V class series</td> <td></td> <td></td> <td>470</td> <td></td> <td></td>		· · · · · · · · · · · · · · · · · · ·	400 to 600 V for 400 V class series			470		
H25 Thermistor (for motor) (Mode selection) 0 : Disable 0 : Disable 0 : Disable 1 : PTC (The inverter immediately trips with DH4 displayed.) 2 : PTC (The inverter issues output signal THM and continues to run.) 3 : NTC (When connected) 0 : Disable 0 : Disable H27 (Level) 0.00 to 5.00 V 0 : Disable 0 : Disable H28 Droop Control 60.0 to 0.0 Hz 0 : Disable 0 : Disable H30 Communications Link Function (Mode selection) Frequency command 0 : F01/C30 Fu2 Fu2 1 : RS-485 (Port 1) 0 : O : O 0 : O 1 : RS-485 (Port 1) F02 2 : F01/C30 RS-485 (Port 1) Fu2 2 : F01/C30 Image: Control 1 Image: Control 1 Image: Control 1 1 : RS-485 (Port 1) F02 5 : RS-485 (Port 2) Fu2 5 : RS-485 (Port 1) Image: Control 1 Image: Control 1 Image: Control 1 2 : F01/C30 RS-485 (Port 1) RS-485 (Port 1) Image: Control 1 Image: Control 1 Image: Control 1 Image: Control 1 3 : RS-485 (Port 2) F02 5 : RS-485 (Port 2) F02 5 : RS-485 (Port 1) Image: Control 1 Image: Control 1 Image: Control 1 4 : RS-485 (Port 2) F02 5 : RS-485 (Port 2) F02 5 : RS-485 (Port 2) Image: Control 1 <td>H 16</td> <td>(Allowable momentary power failure time)</td> <td>0.0 to 30.0 s 999: Automatically determined by inverter</td> <td></td> <td>0</td> <td>999</td> <td>0</td> <td>0</td>	H 16	(Allowable momentary power failure time)	0.0 to 30.0 s 999: Automatically determined by inverter		0	999	0	0
Mode selection 1 : PTC (The inverter immediately trips with 0H4 displayed.) 2 : PTC (The inverter issues output signal THM and continues to run.) 3 : NTC (When connected) 0 0.35 0 H27 (Level) 0.00 to 5.00 V 0 0.35 0 H28 Droop Control 60.0 to 0.0 Hz 0 0.00 × H30 Communications Link Function (Mode selection) Frequency command 0 : F01/C30 Run command F02 0 0 0 0 1 : RS-485 (Port 1) F02 2 : F01/C30 RS-485 (Port 1) 0 0 0 0 0 2 : F01/C30 RS-485 (Port 1) F02 1 : RS-485 (Port 1) 4 : RS-485 (Port 2) F02 5 : RS-485 (Port 1) 4 : RS-485 (Port 2) 6 : RS-485 (Port 1) 4 : RS-485 (Port 1) 4 : RS-485 (Port 1) 4 : RS-485 (Port 2) 6 : RS-485 (Port 1) 4 : RS-485 (Port 2)				0	0	0	0	0
H21 Clevel 2 : PTC (The inverter issues output signal THM and continues to run.) 3 : NTC (When connected) 0 0.35 0 K28 Droop Control 60.0 to 0.0 Hz 0 0.00 X H30 Communications Link Function (Mode selection) Frequency command 0 : F01/C30 Run command F02 0 0 0 X H30 Communications Link Function (Mode selection) Frequency command 0 : F01/C30 Run command F02 0 <td></td> <td></td> <td>1 : PTC (The inverter immediately trips with DHH displayed.)</td> <td></td> <td></td> <td></td> <td></td> <td></td>			1 : PTC (The inverter immediately trips with DHH displayed.)					
H27 (Level) 3 : NTC (When connected) 0 0 0 0 H27 (Level) 0.00 to 5.00 V 0 0 0.35 0 H28 Droop Control 60.0 to 0.0 Hz 0 0 0 X H30 Communications Link Function (Mode selection) Frequency command 0 : F01/C30 Run command F02 0		, , , , , , , , , , , , , , , , , , , ,						
H28 Droop Control 60.0 to 0.0 Hz O 0.0 X H30 Communications Link Function (Mode selection) Frequency command 0 : F01/C30 Run command F02 O			3 : NTC (When connected)					
H28 Droop Control 60.0 to 0.0 Hz 0 0.0 X H30 Communications Link Function (Mode selection) Frequency command 0 : F01/C30 Run command F02 0	127	(Level)	0.00 to 5.00 V	0	0	0.35	0	0
H3D Communications Link Function (Mode selection) Frequency command 0 : F01/C30 Run command F02 O <		Droop Control	60.0 to 0.0 Hz	0	0	0.0	0	×
1 : RS-485 (Port 1) F02 2 : F01/C30 RS-485 (Port 1) 3 : RS-485 (Port 1) RS-485 (Port 1) 4 : RS-485 (Port 2) F02 5 : RS-485 (Port 2) RS-485 (Port 1)			Frequency command Run command	0	0	0	0	0
1 : RS-485 (Port 1) F02 2 : F01/C30 RS-485 (Port 1) 3 : RS-485 (Port 1) RS-485 (Port 1) 4 : RS-485 (Port 2) F02 5 : RS-485 (Port 2) RS-485 (Port 1)		(Mode selection)	0 : F01/C30 F02					
2 : F01/C30 RS-485 (Port 1) 3 : RS-485 (Port 1) RS-485 (Port 1) 4 : RS-485 (Port 2) F02 5 : RS-485 (Port 2) RS-485 (Port 1)		, , , , , , , , , , , , , , , , , , , ,	1 : RS-485 (Port 1) F02					
3 : RS-485 (Port 1) RS-485 (Port 1) 4 : RS-485 (Port 2) F02 5 : RS-485 (Port 2) RS-485 (Port 1)								
4 : RS-485 (Port 2) F02 5 : RS-485 (Port 2) RS-485 (Port 1)								
5 : RS-485 (Port 2) RS-485 (Port 1)								
0. FUI/030 R3-403 (FUIL2)			6 : F01/C30 RS-485 (Port 2)					

•H codes: High Performance Functions

Code	Name	Data setting range	Change when running	Data copying	Default setting	Drive (V/f	control Vector
нзо	Communications Link Function (Mode selection)	8 : RS-485 (Port 2) RS-485 (Port 2)	0	0	0	0	0
<u>842</u> 843	Capacitance of DC Link Bus Capacitor Cumulative Run Time of Cooling Fan	Indication for replacement of DC link bus capacitor 0000 to FFFF (hex.) Indication for replacement of cooling fan (in units of 10 hours)	0	×××		0	0
<u>НЧЧ</u> НЧ5	Startup Counter for Motor 1 Mock Alarm	Indication of cumulative startup count 0000 to FFFF (hex.) 0 : Disable 1 : Mock alarm	0	××	0	0	0
<i>H</i> 46	Starting Mode (Auto search delay time 2)	0.1 to 10.0 s	0	△1△2	*2	0	×
<u>841</u> 848	Initial Capacitance of DC Link Bus Capacitor Cumulative Run Time of Capacitors on PCB	Indication for replacement of DC link bus capacitor 0000 to FFFF (hex.) Indication for replacement of capacitors (The cumulative run time can be modified or reset in units of 10 hours.)	0	X		0	
849	Starting Mode (Auto search delay time 1)	0.0 to 10.0 s	Ō	0	0.0	Õ	X
HS0 HS 1	Non-linear V/f Pattern 1 (Frequency) (Voltage)	0.0: Cancel, 0.1 to 500.0 Hz 0 to 240: Output an AVR-controlled voltage (for 200 V class series)	X	 2	*7 *8	0	X X
HS2	Non-linear V/f Pattern 2 (Frequency)	0 to 500: Output an AVR-controlled voltage (for 400 V class series) 0.0: Cancel, 0.1 to 500.0 Hz	×	0	0.0	0	×
HS3	(Voltage)	0 to 240: Output an AVR-controlled voltage (for 200 V class series) 0 to 500: Output an AVR-controlled voltage (for 400 V class series)	×	△2	0	0	×
#59 #55	Acceleration Time (Jogging) Deceleration Time (Jogging)	0.00 to 6000 s 0.00 to 6000 s			*1 *1	0	
<i>X</i> 56	Deceleration Time for Forced Stop	0.00 to 6000 s	Ŏ	Ō	*1	Ō	Ŏ
		0% to 100% 0% to 100%			10	0	
	2nd S-curve acceleration range (Trailing edge) 1st S-curve deceleration range (Leading edge)	0% to 100%	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	10 10	0	\mathbb{H}
<i>X80</i>	2nd S-curve deceleration range (Trailing edge)	0% to 100%	Ŏ	ŏ	10	ŏ	Õ
H6 I H63	UP/DOWN Control (Initial frequency setting) Low Limiter (Mode selection)	0 : 0.00 Hz 1 : Last UP/DOWN command value on releasing the run command 0 : Limit by F16 (Frequency limiter: Low) and continue to run	×	0	1	0	0
105	Low Limiter (wode selection)	1 : If the output frequency lowers below the one limited by F16 (Frequency limiter: Low), decelerate to stop the motor.			0		
НБЧ	(Lower limiting frequency)	0.0: Depends on F16 (Frequency limiter, Low) 0.1 to 60.0 Hz	0	0	1.6	0	×
- H65 - H66	Non-linear V/f Pattern 3 (Frequency) (Voltage)	0.0: Cancel, 0.1 to 500.0 Hz 0 to 240: Output an AVR-controlled voltage (for 200 V class series)	X	 2	0.0	0	X
H6 7		0 to 500: Output an AVR-controlled voltage (for 400 V class series) 0 to 500: Output an AVR-controlled voltage (for 400 V class series) 0 : Enable during running at constant speed		0	0	0	
	Auto Energy Saving Operation (Mode selection)	1 : Enable in all modes	×	_			_
H68	Slip Compensation 1 (Operating conditions)	 0: Enable during ACC/DEC and at base frequency or above 1: Disable during ACC/DEC and enable at base frequency or above 2: Enable during ACC/DEC and disable at base frequency or above 3: Disable during ACC/DEC and at base frequency or above 		0	0	0	×
H69	Automatic Deceleration (Mode selection)	O : Disable Control with Force-to-stop if actual deceleration time exceeds three times the specified one Co link bus voltage control with Force-to-stop if actual deceleration time exceeds three times the specified one Torque limit control with Force-to-stop disabled S : DC link bus voltage control with Force-to-stop disabled	0	0	0	0	0
סרא	Overload Prevention Control	0.00: Follow the deceleration time selected 0.01 to 100.0 Hz/s 999: Cancel	0	0	999	0	0
ורא	Deceleration Characteristics	0 : Disable 1 : Enable	0	0	0	0	×
872	Main Power Down Detection (Mode selection)	0 : Disable 1 : Enable	0	0	1	0	0
НТЗ	Torque Limiter (Operating conditions)	 0 : Enable during ACC/DEC and running at constant speed 1 : Disable during ACC/DEC and enable during running at constant speed 2 : Enable during ACC/DEC and disable during running at constant speed 	×	0	0	0	0
	Frequency increment limit for braking	0.0 to 500.0 Hz 0 to 8760 (in units of 10 hours)	0	0	5.0	0	X
	Service Life of DC Link Bus Capacitor (Remaining time) Maintenance Interval (M1)	0: Disable; 1 to 9999 (in units of 10 hours)	$\overline{}$	X	- 8760	$\overline{0}$	$\overline{6}$
879	Preset Startup Count for Maintenance (M1)	0000: Disable; 0001 to FFFF (hex.)	0	×	0	0	Ö
	Output Current Fluctuation Damping Gain for Motor 1 Light Alarm Selection 1	0.00 to 0.40 0000 to FFFF (hex.)	0	8	0.20	0	X
<i>H82</i>	Light Alarm Selection 2	0000 to FFFF (hex.)	0	0	0	0	0
<i>X84</i>	Pre-excitation (Initial level)	100% to 400%	Õ	0	100	X	Ŏ
	(Time) Reserved	0.00: Disable; 0.01 to 30.00 s 0 to 2		 ∆1∆2	0.00	X	8
	Reserved	25.0 to 120.0 Hz		\bigcirc	25.0	$\overline{6}$	\mathbf{F}
H88	Reserved	0 to 3; 999	Ō	×	0	0	0
	Reserved Reserved	0, 1 0, 1	0		0	0	
	PID Feedback Wire Break Detection	0.1 Disable alarm detection 0.1 to 60.0 s			0.0	$\overline{}$	8
<i>H82</i>	Continuity of Running (P)	0.000 to 10.000 times; 999	Õ	$\triangle 1 \triangle 2$	999	0	0
<u>893</u>		0.010 to 10.000 s; 999			999	0	8
	Cumulative Motor Run Time 1 DC Braking (Select characteristics)	0 to 9999 (The cumulative run time can be modified or reset in units of 10 hours.) 0 : Slow 1 : Quick	X	X	1	0	X
	STOP Key Priority/ Start Check Function	Data STOP key priority Start check function 0: Disable Disable 1: Enable Disable 2: Disable Enable	Ő	Ö	0	0	Ő
нөп	Clear Alarm Data	3: Enable 0 : Disable Enable	0	×	0	0	0
H98	Protection/Maintenance Function	1 : Enable (Setting "1" clears alarm data and then returns to "0.") 0 to 127: Display data in decimal format	0	0	83	0	0
	(Mode selection)	Bit 0: Lower the carrier frequency automatically (0: Disabled; 1: Enabled) Bit 1: Detect input phase loss (0: Disabled; 1: Enabled) Bit 2: Detect output phase loss (0: Disabled; 1: Enabled)					

de	Name	Data setting range	Change wher		Default		contro
38	Protection/Maintenance Function	Bit 3: Select life judgment threshold of DC link bus capacitor (0: Factory default; 1: Customer's setting)	running	copying	setting 83	V/f	
	(Mode selection)	Bit 4: Judge the life of DC link bus capacitor(0: Disabled; 1: Enabled)Bit 5: Detect DC fan lock(0: Enabled; 1: Disabled)			00		
Α	codes: Motor 2 Para	Bit 6: Detect braking transistor error(for 22 kW or below) (0: Disabled; 1: Enabled) ameters					
de	Name	Data setting range	Change wher		Default	Drive	
]	Maximum Frequency 2	25.0 to 500.0 Hz	running ×	copying	setting 60.0	V/f	Vec
, , 32	Base Frequency 2	25.0 to 500.0 Hz	X	Ĭŏ	50.0	1 ŏ	$\overline{}$
33	Rated Voltage at Base Frequency 2	0 : An AVR-uncontrolled voltage Output a voltage in proportion to input voltage 80 to 240 : Output an AVR-controlled voltage (for 200 V class series) 160 to 500 : Output an AVR-controlled voltage (for 400 V class series)	×	△2	200 400	Ō	C
<u> </u>	Maximum Output Voltage 2	80 to 240 : Output an AVR-controlled voltage (for 200 V class series) 160 to 500 : Output an AVR-controlled voltage (for 400 V class series)	×	△2	200 400	0	>
75 76	Torque Boost 2 Electronic Thermal Overload Protection for Motor 2	0.0% to 20.0% (percentage with respect to "Rated Voltage at Base Frequency 2") 1 : For a general-purpose motor with shaft-driven cooling fan 2 : Fore instructed riting after an under the under a relativity instruction of the state of the second acting fan	0	0	*2 1	0	
רנ	(Select motor characteristics) (Overload detection level)	2 : For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan 0.00: Disable 1% to 135% of the rated current (allowable continuous drive current) of the motor		△1△2	*3	0	+
, , 38		0.5 to 75.0 min	Ĭŏ		*4	ŏ	t
79	DC Braking 2 (Braking starting frequency)	0.0 to 60.0 Hz	Ō	Ō	0.0	Ō	
10	(Braking level)	0% to 100%	0	0	0	0	
11	(Braking time)	0.00: Disable; 0.01 to 30.00 s			0.00	0	
12	Starting Frequency 2	0.0 to 60.0 Hz			0.5	0	
13	Load Selection/ Auto Torque Boost/ Auto Energy Saving Operation 2	 0 : Variable torque load 1 : Constant torque load 2 : Auto-torque boost 3 : Auto-energy saving operation(Variable torque load during ACC/DEC) 			1		
		4 : Auto-energy saving operation(Constant torque load during ACC/DEC) 5 : Auto-energy saving operation(Auto-torque boost during ACC/DEC)					
14	Drive Control Selection 2	0 : V/f control with slip compensation inactive 1 : Dynamic torque vector control 2 : V/f control with slip compensation active 6 : Vector control with speed sensor	×	0	0	0	
15	Motor 2 (No. of poles)	2 to 22 poles	×		4	0	
15		0.01 to 1000 kW (when A39 = 0, 2. 3 or 4) 0.01 to 1000 HP (when A39 = 1)	×		*6	Ŏ	Ċ
17		0.00 to 2000 A	×	△1△2	*6	0	
18	(Auto-tuning)	0 : Disable 1 : Tune while the motor stops. (%R1, %X and rated slip frequency) 2 : Ture while the motor strating under Wonth (%R1, %X ated \$\overline\$), add overl, magnet saturation laters 1 is 5, and magnet saturation aters of 1 is 5, and magnet saturation aters or torontrol (%R1, %X, rated slip frequency, no-load current, magnetic saturation aters aters in factors 1 is 5, and magnetic saturation extension factors 1 is 5. and 1 is	×	×	0	0	
20	(No-load current)		×	△1△2	*6	0	
24		0.00% to 50.00%	0	△1△2	*6	0	
22		0.00% to 50.00%	0		*6	0	
23	(Slip compensation gain for driving)		0	0	100.0	0	
24 76	(Slip compensation response time) (Slip compensation gain for braking)			<u>△1△2</u> ○	0.12 100.0	0	
25 26	(Slip compensation gain for braking) (Rated slip frequency)	0.0% to 200.0%	×		*6	$\overline{}$	
27	(Iron loss factor 1)		Ô		*6	ŏ	
28		0.00% to 20.00%	Τŏ	△1△2	0.00	ŏ	tè
29	(Iron loss factor 3)	0.00% to 20.00%	0	△1△2	0.00	0	
30	(Magnetic saturation factor 1)		0	△1△2	*6	0	
31	(Magnetic saturation factor 2)				*6	\bigcirc	
32 33	(Magnetic saturation factor 3) (Magnetic saturation factor 4)	0.0% to 300.0%		△1△2 △1△2	*6 *6		
33 34	(Magnetic saturation factor 4)		tŏ	$\triangle 1 \triangle 2$	*6	Hŏ	7
35		0.0% to 300.0%	Ĭŏ	$\triangle 1 \triangle 2$	*6	ŏ	\overline{c}
36	(Magnetic saturation extension factor "b")	0.0% to 300.0%	Τŏ		*6	ŏ	t
37	(Magnetic saturation extension factor "c")	0.0% to 300.0%	Ō	△1△2	*6	Ō	Č
39	Motor 2 Selection	 0 : Motor characteristics 0 (Fuji standard motors, 8-series) 1 : Motor characteristics 1 (HP rating motors) 2 : Motor characteristics 2 (Fuji motors exclusively designed for vector control) 3 : Motor characteristics 3 (Fuji standard motors, 6-series) 4 : Other motors 	×	△1△2	0	0	
-10	Slip Compensation 2 (Operating conditions)	 0 : Enable during ACC/DEC and at base frequency or above 1 : Disable during ACC/DEC and enable at base frequency or above 2 : Enable during ACC/DEC and disable at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 	×	0	0	0	
 12	Output Current Fluctuation Damping Gain for Motor 2	0.00 to 0.40			0.20		
12	Motor/Parameter Switching 2 (Mode selection)	0 : Motor (Switch to the 2nd motor) 1 : Parameter (Switch to particular A codes)			0		
13	Speed Control (Speed command filter)	0.000 to 5.000 s	0	0	0	X	(
15 44		0.000 to 0.100 s	0	Ŏ	0	X	
		0.1 to 200.0 times	Õ	ŏ	0	X	
46	I (Integral time)	0.001 to 1.000 s	0	Ŏ	0	X	
-18	(Output filtor)	0.000 to 0.100 s	0	0	0	X	(

*3 The motor rated current is automatically set. See Table 5.2 (function code P03).
 *4 5.0s for inverters with a capacity of 22 kW or below; 10.0s for those with 30 kW or above.
 *5 The motor constant is automatically set. depending upon the inverter's capacity. See Table 5.2.
 *7 0 for inverters with a capacity of 22 kW or below; 5.0 for those with 30 kW or above.
 *8 0 for inverters with a capacity of 22 kW or below; 20 for those with 30 kW or above.
 *8 0 for inverters with a capacity of 22 kW or below; 20 for those with 30 kW or above.
 *3 0 transverters with a capacity of 22 kW or below; 20 for those with 30 kW or above.
 *3 0 transverters with a capacity of 22 kW or below; 20 for those with 30 kW or above.
 *3 0 transverters with a capacity of 22 kW or below; 20 for those with 30 kW or above.
 *3 0 transverters with a capacity of 22 kW or below; 20 for those with 30 kW or above.
 *2 0 transverters with a capacity of 22 kW or below; 20 for those with 30 kW or above.
 *2 0 transverters with a capacity of 22 kW or below; 20 for those with 30 kW or above.
 *2 0 transverters with a capacity of 22 kW or below; 20 for those with 30 kW or above.
 *2 0 transverters with a capacity of 20 kW or below; 20 for those with 30 kW or above.
 *2 0 transverters with a capacity of 20 kW or below; 20 for those with 30 kW or above.
 *3 0 transverters with a capacity of 20 kW or below; 20 for those with 30 kW or above.
 *4 the capacity of 20 km capacity of 20 km and the pressing the set of t

- 29 -

Function Settings

ſ

Function Settings

A codes: Motor 2 Parameters

	Code	News	Dete estima anna	Change when	Data	Default	Drive c	ontrol
	Code	Name	Data setting range	running	copying	setting	V/f	Vector
-	<i>85</i> T	Cumulative Motor Run Time 2	0 to 9999 (The cumulative run time can be modified or reset in units of 10 hours.)	×	×	-	0	0
	852	Startup Counter for Motor 2	Indication of cumulative startup count 0000 to FFFF (hex.)	0	×	-	0	0
	853	Motor 2 (%X correction factor 1)	0% to 300%	0	∆1∆2	100	0	0
	854	(%X correction factor 2)	0% to 300%	0	$\triangle 1 \triangle 2$	100	0	0
	854 855	(Torque current under vector control)	0.00 to 2000 A	×	$\triangle 1 \triangle 2$	*6	×	0
-	856	(Induced voltage factor under vector control)	50 to 100	X	$\triangle 1 \triangle 2$	85	X	0

b codes: Motor 3 Parameters

Н

10.1 Maximum Requency 3 25.016 9800 Ftz X C 6.00 C 20.2 Reas Programmy 3 25.016 9800 Ftz X A C 6.00 C 20.3 Read Votage at Base Programmy 3 25.016 9800 Ftz A <th>Code</th> <th>Name</th> <th>Data setting range</th> <th>Change whe running</th> <th>n Data copying</th> <th>Default setting</th> <th>Drive</th> <th>control Vector</th>	Code	Name	Data setting range	Change whe running	n Data copying	Default setting	Drive	control Vector
6.573 Relied Voltage at Base Frequency 3 0.11: A MR uncontext ollage (2004 as welfsen properties the functional); 800 to 240: Output an ARR-controlled Voltage102 400 Voltage 5 are 500. X A22 A00 0 X 8.057 Maximum Cutput Voltage 3 0.01: 200: Output an ARR-controlled Voltage102 400 Voltage 5 are 500. X A22 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< th=""><th>50 T</th><th>Maximum Frequency 3</th><th>25.0 to 500.0 Hz</th><th></th><th></th><th></th><th></th><th></th></t<>	50 T	Maximum Frequency 3	25.0 to 500.0 Hz					
Bit Not Starting Frequency 200 Bit De 240 - Output an APR-controlled voltage(or 200 V class series) 400 C 2017 Maximum Output Voltage 3 Bit De 260 - Output an APR-controlled voltage (or 200 V class series) X 22 200 X 2015 Section Demail Output Voltage 3 Bit De 260 - Output an APR-controlled voltage (or 200 V class series) X 22 200 X 2015 Section Demail Output Voltage 3 Bit De 260 - Output an APR-controlled voltage (or 200 V class series) X X X X 2015 Section Demail One Control Output Development on the APR control output Section Development Develo			25.0 to 500.0 Hz	×	0	50.0	0	0
International and the State County of the State County of the State County of State Cou	603	Rated Voltage at Base Frequency 3	80 to 240 : Output an AVR-controlled voltage(for 200 V class series)	×	△2		0	0
Babb Editional Thermal Decision 0 1 0 1 0 0 1 0 0 1 0			160 to 500 : Output an AVR-controlled voltage (for 400 V class series)			400		
Trivitaria Select nor exametated (Normal detection in the contrast of the state) Image: Selection in the state of the state (Normal time constant) Image: Selection in the state of the state (Normal time constant) Image: Selection in the state of the state (Normal time constant) Image: Selection in the state of the state (Normal time constant) Image: Selection in the state of the state (Normal time constant) Image: Selection in the state (Normal time state (Normal time in the state (Normal time in the state (Normal time in the state of time in the state (Normal time in the state of time in the state (Normal time in the state of time in the state of time in the state (Normal time in the state of tim time in the state of time in the state of time in the state of								
EC2 Coverbad detector level 500 Biolate 1% 15% of the start current (about a continue discurrent) C <thc< th=""> <thc< th=""> C</thc<></thc<>	808			0	0	1	0	
1629 Charlow (1)	600			0	A1A2	*2	0	
12-19 DC Tasking 3 Basis garing leagen 0.0 6 0.0 Hz 0								<u> </u>
1/10 Constant (see) Constant (see) <thconstant (see)<="" th=""> Constant (see)<td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td></thconstant>					<u> </u>			
b.11 (Braking time) (00: Disable: 0.01: 03:00: 9 () () 0.00:		(Braking & (Blaking starting inequency)	0% to 100%	<u> </u>	~		\sim	<u> </u>
1-2: Starting Frequency 3. 0.010 60.0 Hz 0.0 0.05 0.0 0.05 Aluto Torque Boost/ Auto Energy Saving Operation 3 1. Constant torque load 3. Auto-energy saving operation(Autoing ACC/DEC) 4. Auto-energy saving operation(Constant torque load during ACC/DEC) 5. Auto-energy saving operation(Constant torque load during ACC/DEC) 5. Auto-energy saving operation(Autoing AEC/DEC) 5. Auto-energy saving aperation(Autoing AEC/DEC) 5. Auto-energy saving operat			0.00: Disable: 0.01 to 30.00 s			-		
8.73 Load Solaction/ Auto Torque Boost/ Auto Energy Saving Operation 3 2 Auto Energy Saving Operation 4 X C 1 C C Auto Energy Saving Operation 3 X C 1 C C Auto Energy Saving Operation 4 X C 1 C C Auto Energy Saving Operation 4 X C 0 C C 0 C C 0 C C C 0 C C 0 C C 0 C C C C C 0 C <				Ō	Ó	0.5	Ó	Ó
Auto Energy Saving Operation 3 2: Auto-torque boost 2: Auto-torque boost 4: Auto-energy saving operation (Constant torque load during ACC/DEC)	6 13		0 : Variable torque load	×	0	1	0	
1: Dynamic torque vedor control 2: V/ control with speed sensor -			 2 : Auto-torque boost 3 : Auto-energy saving operation(Variable torque load during ACC/DEC) 4 : Auto-energy saving operation(Constant torque load during ACC/DEC) 					
2: Vif control with silp compensation active <td< td=""><td>6 14</td><td>Drive Control Selection 3</td><td></td><td>×</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	6 14	Drive Control Selection 3		×	0	0	0	0
1:5 Motor 3 (No. of poles) 21:0.22 poles b:7 (Rated capacity) 0.01 to 1000 HW (when b39 = 0, 2, 3 or 4) X Δ1:2.2 f 0 b:7 (Rated current) 0.00 to 2000 A X Δ1:2.2 f 0 b:8 (Auto-tuning) 1: Time while the motor stops. (%R1, %X and rated slip frequency) X X 0 0 2: Time while the motor stops. (%R1, %X and rated slip frequency) X X 0 0 0 2: Time while the motor stops. (%R1, %X and rated slip frequency) X X 0 0 0 2: Time while the motor stops. (%R1, %X and rated slip frequency) X X A 0 0 2: Time while the motor stops. (%R1, %X and rated slip frequency) X X A 0 0 2: Time while the motor stops. (%R1, %X and rated slip frequency) X X A 10.2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2 : V/f control with slip compensation active					
b 6 6 0.01 to 1000 kW (when b39 = 0, 2, 3 or 4) X A.1.2.2 *6 0 b 7 (Rated current) 0.00 to 2000 A X A.1.2.2 *6 0 b 7 (Rated current) 0.00 to 2000 A X A.1.2.2 *6 0 b 7 (Rated current) 0.00 to 2000 A X A.1.2.2 *6 0 0 b 7 (Ruto-funing) 0.01 bissible 1.1.1.2.1 *6 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
0.01 to 1000 HP (when b39 = 1) x <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>								-
b / 17 (Rated current) 0.00 to 2000 A × A 14.2 *6 ○ ○ b / 8 (Auto-turning) (Disable 1 Ture while the motor stops, (%A1, %X and rated sip frequency) X X 0 ○ 2 Ture while the motor stops, (%A1, %X and rated sip frequency) X X 0 ○ 2 Ture while the motor stops, (%A1, %X and rated sip frequency) X X 0 ○ 2 Ture while the motor stops, (%A1, %X and rated sip frequency) X X 0 ○ 2 Ture while the motor stops, (%A1, %X and rated sip frequency) X X 1 C 0 2 Ture while the motor stops, (%A1, %X and rated sip frequency) X X 1 C 0 <td>6 16</td> <td>(Rated capacity)</td> <td></td> <td>^</td> <td></td> <td>0</td> <td></td> <td></td>	6 16	(Rated capacity)		^		0		
6.18 (Auto-tuning) 0: Disable X X 0 0 0 2: Une while the motor stops, (%R1, %X and rated slip frequency) X X X 0 0 0 2: Une while the motor stops, (%R1, %X and rated slip frequency) X X X 0 0 3: Bardin staff, and	517	(Poted ourropt)		×	<u>∧1∧2</u>	*6		
2 i. Tune while their motor stops, (%F1, %X and rated sign frequency) 2 i. Line while the motor stops, (%F1, %X and rated sign frequency) 3 I. Line while the motor stops, (%F1, %X and rated sign frequency) 3 i. Line while the motor stops, (%F1, %X and rated sign frequency) 620 (No-load current) 0.00 to 2000. A 0.41A2 *6 0 621 (%H1) 0.00% to 50.00%. 0.41A2 *6 0 622 (%H1) 0.00% to 50.00%. 0.41A2 *6 0 623 (%H1) 0.00% to 50.00%. 0.41A2 *6 0 624 (%Ip compensation capins time) 0.01% to 20.00%. 0.41A2 *6 0 625 (Sip compensation capins time) 0.01% to 20.00%. 0.41A2 *6 0 6261 (Iron loss factor 1) 0.00% to 20.00%. 0.41A2 *6 0 6271 (Iron loss factor 2) 0.0% to 20.00%. 0.41A2 *6 0 6281 (Iron loss factor 2) 0.0% to 20.00%. 0.41A2 *6 0 6293 (Magne							~	-
b27 (%H1) 0.00% to 50.00% ○ △1.0.2 f6 ○ b27 (%X) 0.00% to 50.00% ○ △1.0.2 f6 ○ b23 (Sip compensation response time) 0.01 to 10.00 s ○ △1.0.2 0.12 ○ X b25 (Sip compensation response time) 0.01 to 10.00 s ○ △1.0.2 0.12 ○ X b265 (Fip compensation response time) 0.00% to 20.00% ○ △1.0.2 6 ○ ○ 0.00 ○ D <tdd< td=""><td></td><td>(</td><td> Tune while the motor stops. (%R1, %X and rated slip frequency) Tune while the motor is rotating under VI control (%R1, %X, rated slip frequency, no-load current, magnetic saturation factors 1 to 5, and magnetic saturation extension factors "a" to "c") Tune while the motor is rotating under vector control (%R1, %X, rated slip frequency, no-load current, magnetic saturation factors 1 to 5, and magnetic saturation extension factors "a" to "c") </td><td></td><td></td><td></td><td>-</td><td></td></tdd<>		(Tune while the motor stops. (%R1, %X and rated slip frequency) Tune while the motor is rotating under VI control (%R1, %X, rated slip frequency, no-load current, magnetic saturation factors 1 to 5, and magnetic saturation extension factors "a" to "c") Tune while the motor is rotating under vector control (%R1, %X, rated slip frequency, no-load current, magnetic saturation factors 1 to 5, and magnetic saturation extension factors "a" to "c") 				-	
							~	
b22 (Slip compensation gain for triving) 0.0% to 200.0% ○ 100.0 ○ b24 (Slip compensation gain for braking) 0.0% to 200.0% ○ 100.0 ○ b25 (Slip compensation gain for braking) 0.0% to 200.0% ○ 100.0 ○ b26 (Ifen loss factor 1) 0.00% to 200.0% ○ △ △ ○ ○ ○ b27 (Ifon loss factor 2) 0.00% to 20.00% ○ △ △ ○ <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td></td> <td>_</td>				_		-		_
b^{24} (Slip compensation response time) 0.01 to 10.00 s 0.0% to 20.0% 0.01 to 12.00 x b^{25}_{25} (Rated Slip frequency) 0.00 to 15.00 Hz $X \Delta 1\Delta 2$ 76 0 b^{27}_{25} (Iron loss factor 1) 0.00% to 20.00% 0.01 to 15.00 Hz $X \Delta 1\Delta 2$ 76 0 b^{27}_{25} (Iron loss factor 2) 0.00% to 20.00% 0.00% to 20.00% $0.\Delta 1\Delta 2$ 0.00 0 b^{28}_{25} (Iron loss factor 3) 0.00% to 20.00% 0.00% to 20.00% $0.\Delta 1\Delta 2$ 0.00 0 b^{23}_{22} (Magnetic saturation factor 1) 0.0% to 300.0% $0.\Delta 1\Delta 2$ 76 0 b^{32}_{25} (Magnetic saturation factor 3) 0.0% to 300.0% $0.\Delta 1\Delta 2$ 76 0 b^{32}_{25} (Magnetic saturation factor 3) 0.0% to 300.0% $0.\Delta 1\Delta 2$ 76 0 b^{32}_{25} (Magnetic saturation factor 3) 0.0% to 300.0% $0.\Delta 1\Delta 2$ 76 0 b^{32}_{25} (Magnetic saturation factor 3) 0.0% to 300.0% $0.\Delta 1\Delta 2$ 76 0 b^{32}_{25} (Magnetic saturation factor 3) 0.0% to 300.0% $0.\Delta 1\Delta 2$ 76 0 b^{32}_{25} (Magnetic saturation factor 3) 0.0% to 300.0% $0.\Delta 1\Delta 2$ 76 0 b^{32}_{25} (Magnetic saturation factor 3) 0.0% to 300.0% $0.\Delta 1\Delta 2$ 76 0 b^{32}_{25} (Magnetic saturation factor 3) 0.0% to 300.0% $0.\Delta 1\Delta 2$ 76 0 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td>					-	-		
1255 (Sip compensation gain for braking) 0.0% to 200.0% ○ 0.100.0 ○ 1256 (Iron loss factor 1) 0.00% to 20.00% ○ 1.4.2 *6 ○ 1257 (Iron loss factor 2) 0.00% to 20.00% ○ 1.4.2 *6 ○ 1258 (Iron loss factor 3) 0.00% to 20.00% ○ 1.4.2 0.00 ○ 1259 (Iron loss factor 3) 0.00% to 20.00% ○ 1.4.2 0.00 ○ 1251 (Magnetic saturation factor 1) 0.0% to 300.0% ○ 1.4.2 *6 ○ 1231 (Magnetic saturation factor 3) 0.0% to 300.0% ○ 1.4.2 *6 ○ 1232 (Magnetic saturation factor 4) 0.0% to 300.0% ○ 1.4.2 *6 ○ 1233 (Magnetic saturation factor 4) 0.0% to 300.0% ○ 1.4.2 *6 ○ 1233 (Magnetic saturation factor 4) 0.0% to 300.0% ○ 1.4.2 *6 ○ 1233 (Magnetic saturation fact				~			~	-
$\frac{1}{252}$ $\frac{1}{252}$ (fron loss factor 1) $\frac{1}{2000\%}$ $\frac{1}{200\%}$							~	
b27 (Iron loss factor 1) 0.00% to 20.00% ○ △1△2 *6 ○ b27 (Iron loss factor 2) 0.00% to 20.00% ○ △1△2 *6 ○ b27 (Iron loss factor 2) 0.00% to 20.00% ○ △1△2 *6 ○ b37 (Magnetic saturation factor 1) 0.0% to 300.0% ○ △1△2 *6 ○ b32 (Magnetic saturation factor 2) 0.0% to 300.0% ○ △1△2 *6 ○ b33 (Magnetic saturation factor 3) 0.0% to 300.0% ○ △1△2 *6 ○ b34 (Magnetic saturation factor 3) 0.0% to 300.0% ○ △1△2 *6 ○ b34 (Magnetic saturation factor 4) 0.0% to 300.0% ○ △1△2 *6 ○ b34 (Magnetic saturation factor 7) 0.0% to 300.0% ○ △1△2 *6 ○ b37 (Magnetic saturation factor 7) 0.0% to 300.0% ○ △1△2 *6 ○ ○ b37 (Magnetic saturation factor 7) 0.0% to 300.0% ○ △1△2 *6 ○ <					~		-	
1028 (fron loss factor 2) 0.00% to 20.00% 0						-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				_		-	<u> </u>	
				<u> </u>			~	
				-			-	-
b32 (Magnetic saturation factor 3) 0.0% to 300.0% △ 14.22 *6 ○ b33 (Magnetic saturation factor 4) 0.0% to 300.0% △ 14.22 *6 ○ b33 (Magnetic saturation factor 4) 0.0% to 300.0% △ 14.22 *6 ○ b34 (Magnetic saturation factor 4) 0.0% to 300.0% △ 14.22 *6 ○ b35 (Magnetic saturation extension factor 1b) 0.0% to 300.0% △ 14.22 *6 ○ b35 (Magnetic saturation extension factor 1b) 0.0% to 300.0% △ 14.22 *6 ○ b37 (Magnetic saturation extension factor 1b) 0.0% to 300.0% △ 14.22 *6 ○ b33 Motor Selection 0 : Motor characteristics 0 (Fuji standard motors, 8-series) X △ 1△22 0 ○ b39 Motor 3 Selection 0 : Motor characteristics 3 (Fuji standard motors, 6-series) X △ 1△22 0 ○ ○ b40 Slip Compensation 3 0 : Enable during ACC/DEC and at base frequency or above X ○ 0 ○ X b41 Ouput Curret Hubusion Dampin				Ō	△1△2	*6	Ō	Ō
b33 b34 (Magnetic saturation factor 4) b35 (Magnetic saturation extension factor 5) b35 (Magnetic saturation extension factor *c) b36 (Magnetic saturation extension factor *c) b37 (Magnetic saturation extension factor *c) b38 (Magnetic saturation extension factor *c) b37 (Magnetic saturation extension factor *c) b38 (Magnetic saturation extension factor *c) b39 Motor 3 Selection 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% 0.0% to 300.0% 0.0% 0.0% to 300.0% 0.0% 0.0% to 300.0% 0.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% 0.0% to 300.0% <td></td> <td></td> <td></td> <td>0</td> <td>△1△2</td> <td>*6</td> <td>0</td> <td></td>				0	△1△2	*6	0	
b35 (Magnetic saturation extension factor *a) 0.0% to 300.0% ○ △1△2 *6 ○ b37 (Magnetic saturation extension factor *b) 0.0% to 300.0% ○ △1△2 *6 ○ b37 (Magnetic saturation extension factor *b) 0.0% to 300.0% ○ △1△2 *6 ○ b37 (Magnetic saturation extension factor *b) 0.0% to 300.0% ○ △1△2 *6 ○ b38 Motor 3 Selection 0 : Motor characteristics 0 (Fuji standard motors, 8-series) × △1△2 *6 ○ b40 Slip Compensation 3 0 : Motor characteristics 3 (Fuji standard motors, 6-series) × △1△2 °6 ○ b40 Slip Compensation 3 0 : Enable during ACC/DEC and enable at base frequency or above × ○ 0 × b41 Output Curent Fluctuation Damping Gain for Motor 3 0:00 to 0.40 ○ 0.20 × b42 Motor/Parameter Switching 3 0: Motor (Switch to the 3rd motor) × ○ 0 ○ b43 Speed Control 3 (Speed command filter) 0.000 to 0.100 s ○ ○ ○ ○ ○ ○ ○ ○				0	△1△2	*6	0	0
b35 (Magnetic saturation extension factor 'b') 0.0% to 300.0% △ △ 1△2 *6 ○ b37 (Magnetic saturation extension factor 'c') 0.0% to 300.0% ○ △ 1△2 *6 ○ b39 Motor 3 Selection 0 : Motor characteristics 0 (Fuji standard motors, 8-series) × △ 1△2 *6 ○ b39 Motor 3 Selection 0 : Motor characteristics 2 (Fuji motors exclusively designed for vector control) × △ 1△2 0 ○ b40 Slip Compensation 3 0 : Enable during ACC/DEC and enable at base frequency or above × 0 ○ × b40 Slip Compensation 3 0 : Enable during ACC/DEC and disable at base frequency or above × 0 × 1 : Disable during ACC/DEC and disable at base frequency or above × 0 × × b42 Motor/Parameter Switching 3 0 : Motor (Switch to the 3rd motor) × 0 ○ × b43 Speed Control 3 (Speed command filter) 0.000 to 5.000 s ○ 0 × ○ 0 × ○ b44 Speed Control 3 (Speed command filter) 0.000 to 0.100 s ○ ○ 0		(Magnetic saturation factor 5)					-	
b37 (Magnetic saturation extension factor 'c') 0.0% to 300.0% 0 0.0% to 300.0% 0 1.22 *6 0 b39 Motor 3 Selection 0 Motor characteristics 0 (Fuji standard motors, 8-series) X 1.42 0 0 2 Motor characteristics 1 (HP rating motors) X 0.142 0 0 3 Motor characteristics 2 (Fuji motors exclusively designed for vector control) X 0 0 3 Motor characteristics 3 (Fuji standard motors, 6-series) X 0 0 X 4 Other motors 0 Enable during ACC/DEC and at base frequency or above X 0 0 X b40 Slip Compensation 3 0 Enable during ACC/DEC and enable at base frequency or above X 0 0 X b41 Output Current Pluctuation Dampin Gain for Motor 3 0.00 to 0.40 0 0 0 X b42 Motor/Parameter Switching 3 0 Motor (Switch to the 3rd motor) X 0 0 0 X b43 Speed Control 3 (Speed command filter) 0.000 to 0.100 s 0 0 <t< td=""><td></td><td>(Magnetic saturation extension factor "a")</td><td></td><td></td><td></td><td></td><td>~</td><td>-</td></t<>		(Magnetic saturation extension factor "a")					~	-
b33 Motor 3 Selection 0 : Motor characteristics 0 (Fuji standard motors, 8-series) X △1△2 0 0 b33 Motor 3 Selection 1 : Motor characteristics 2 (Fuji motors exclusively designed for vector control) X △1△2 0 0 0 b43 Motor of aracteristics 2 (Fuji motors exclusively designed for vector control) X △1△2 0 0 0 b40 Slip Compensation 3 0 : Enable during ACC/DEC and at base frequency or above X 0 0 X b40 Output Current Puctuation Damping Gan for Motor3 0.00 to 0.40 0 0 X b41 Output Current Puctuation Damping Gan for Motor3 0.00 to 0.40 0 0 X b42 Motor/Parameter Switching 3 0 : Motor (Switch to the 3rd motor) X 0 0 X b43 Speed Control 3 (Speed command filter) 0.000 to 5.000 s 0 0 X 0 b43 Guptu filter) 0.000 to 0.100 s 0 0 X 0 X 0 b43 Speed Control 3 (Speed command filter) 0.000 to 0.100 s 0 0 X <				~		-		~
b 40 Construction 1 : Motor characteristics 1 (HP rating motors) 1 : Motor characteristics 2 (Fuji motors exclusively designed for vector control) 1 : Motor characteristics 2 (Fuji motors exclusively designed for vector control) 1 : Motor characteristics 2 (Fuji motors exclusively designed for vector control) 1 : Motor characteristics 2 (Fuji motors exclusively designed for vector control) 1 : Motor characteristics 3 (Fuji standard motors, 6-series) 1 : Disable during ACC/DEC and at base frequency or above 1 : Disable during ACC/DEC and disable at base frequency or above 1 : Disable during ACC/DEC and disable at base frequency or above 1 : Disable during ACC/DEC and disable at base frequency or above 1 : Disable during ACC/DEC and at base frequency or above 1 : Parameter fuctuation Damping Gain for Motor 3 0 : Motor (Switch to the 3rd motor) 1 : Parameter (Switch to the 3rd motor) 1 : Parameter (Switch to particular b codes) 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :							<u> </u>	~
b400 Slip Compensation 3 (Operating conditions) 0 : Enable during ACC/DEC and enable at base frequency or above 2 : Enable during ACC/DEC and enable at base frequency or above 3 : Disable during ACC/DEC and disable at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency or above 4 : Disable during ACC/DEC and at base frequency above 4 : Di			 Motor characteristics 1 (HP rating motors) Motor characteristics 2 (Fuji motors exclusively designed for vector control) Motor characteristics 3 (Fuji standard motors, 6-series) 			Ŭ		
b 4 / I Output Current Fluctuation Damping Gain for Mator 3 0.00 to 0.40 O 0.20 X b 4/2 Motor/Parameter Switching 3 (Mode selection) 0 : Motor (Switch to the 3rd motor) X 0	640		1 : Disable during ACC/DEC and enable at base frequency or above 2 : Enable during ACC/DEC and disable at base frequency or above	×	0	0	0	×
b42 b43Motor/Parameter Switching 3 (Mode selection)0 : Motor (Switch to the 3rd motor) 1 : Parameter (Switch to particular b codes)X000b43 b44 b44Speed command filter)0.000 to 5.000 s0X00Xb47 b44 b44(Speed detection filter)0.000 to 0.100 s0X00Xb47 b44 b44P (Gain)0.1 to 200.0 times00X0X0b45 b46 b47I (Integral time)0.000 to 0.100 s0X0X0b48 b545 b545(Output filter)0.000 to 0.100 s0X0X0b45 b52Cumulative Motor Run Time 3 b520 to 9999 (The cumulative run time can be modified or reset in units of 10 hours.)XX0b52 b545Motor 3 (%X correction factor 1) (%X correction factor 2)0% to 300%0 $\Delta1\Delta2$ 1000b544(%X correction factor 2)0% to 300%0 $\Delta1\Delta2$ 1000	647	Output Current Fluctuation Damping Gain for Motor 3		0	0	0.20	0	×
b43 Speed Control 3 (Speed command filter) 0.000 to 5.000 s 0 X 0 b43 Speed Control 3 (Speed command filter) 0.000 to 5.000 s 0 X 0 b45 P (Gain) 0.1 to 200.0 times 0 0 X 0 b45 I (Integral time) 0.001 to 1.000 s 0 X 0 0 X 0 b48 (Output filter) 0.000 to 0.100 s 0 0 X 0 0 X 0 b48 (Output filter) 0.000 to 0.100 s 0 0 X 0 0 X 0 b48 (Output filter) 0.000 to 0.100 s 0 0 X 0 0 X 0 b57 I cumulative Motor Run Time 3 0 to 9999 (The cumulative run time can be modified or reset in units of 10 hours.) X - 0 0 X - 0 552 Startup Counter for Motor 3 Indication of cumulative startup count 0000 to FFFF (hex.) X - 0 0		Motor/Parameter Switching 3	0 : Motor (Switch to the 3rd motor)		-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	643			0	0	0	X	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-			
b46 I (Integral time) 0.001 to 1.000 s 0 X 0 b48 (Output filter) 0.000 to 0.100 s 0 X 0 b51 Cumulative Moor Run Time 3 0 to 9999 (The cumulative run time can be modified or reset in units of 10 hours.) X X 0 b52 Startup Counter for Motor 3 Indication of cumulative startup count 0000 to FFFF (hex.) X 0 b53 Motor 3 (%X correction factor 1) 0% to 300% 0 Δ1Δ2 100 0 b54 (%X correction factor 2) 0% to 300% 0 Δ1Δ2 100 0								
b 48 (Output filter) 0.000 to 0.100 s 0 X 0 b 5 1 Cumulative Motor Run Time 3 0 to 9999 (The cumulative run time can be modified or reset in units of 10 hours.) X X 0 0 b 5 2 Startup Counter for Motor 3 Indication of cumulative startup count 0000 to FFFF (hex.) X 0 0 b 5 3 Motor 3 (%X correction factor 1) 0% to 300% 0 0.102 100 0 b 5 4 (%X correction factor 2) 0% to 300% 0 0.102 100 0								
b5 / Lournal Live Motor Run Time 3 0 to 9999 (The cumulative run time can be modified or reset in units of 10 hours.) X X — O b5/2 Startup Counter for Motor 3 Indication of cumulative startup count 0000 to FFFF (hex.) X X — O O b5/3 Motor 3 (%X correction factor 1) 0% to 300% O △1△2 100 O b5/4 (%X correction factor 2) 0% to 300% O △1△2 100 O				0	0	0	X	0
b53 Motor 3 (%X correction factor 1) 0% to 300% 0 △1△2 100 0 0 b54 (%X correction factor 2) 0% to 300% ○ △1△2 100 ○ ○							-	
b53 Motor 3 (%X correction factor 1) 0% to 300% 0 △1△2 100 0 0 b54 (%X correction factor 2) 0% to 300% ○ △1△2 100 ○ ○						—	-	
	554	(%X correction factor 2)	0% to 300%	0		100	0	$\left[\right]$

L

ſ

Code	Name	Data setting range	Change when running	Data copying	Default setting	Drive of V/f	Vecto
55	Motor3 (Torque current under vector control)	0.00 to 2000 A	×	$\triangle 1 \triangle 2$		X	
58			×	△1△2	85	×	0
)r	codes: Motor 4 Para	meters					
ode	Name	Data setting range	Change when			Drive of	
		25.0 to 500.0 Hz	$\frac{running}{\times}$	copying	60.0	V/f	Vecto
<u>07</u> 02	Maximum Frequency 4 Base Frequency 4	25.0 to 500.0 Hz	X		50.0	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	Fc
03	Rated Voltage at Base Frequency 4	0 : An AVR-controlled voltage (Output a voltage in proportion to input voltage.)	X	△2	200	ŏ	Τč
		80 to 240: Output an AVR-controlled voltage(for 200 V class series)			400		
		160 to 500: Output an AVR-controlled voltage(for 400 V class series)					
04	Maximum Output Voltage 4	80 to 240: Output an AVR-controlled voltage(for 200 V class series)	×	△2	200	0	×
05	Torque Boost 4	160 to 500: Output an AVR-controlled voltage(for 400 V class series) 0.0% to 20.0%(percentage with respect to "Rated Voltage at Base Frequency 4")	0	0	400	0	×
05	Electronic Thermal Overload Protection	1 : For a general-purpose motor with shaft-driven cooling fan	ŏ	ŏ	1	ŏ	ΤĈ
	for Motor 4 (Select motor characteristics)	2 : For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan					
07	(Overload detection level)	0.00: Disable 1% to 135% of the rated current (allowable continuous drive current) of the motor	0	$\triangle 1 \triangle 2$	*3	0	
08	(Thermal time constant)	0.5 to 75.0 min			*4		
-09 - 10	DC Braking 4 (Braking starting frequency) (Braking level)	0.0 to 60.0 Hz 0% to 100%			0.0	$\overset{\circ}{\vdash}$	Fc
- 11	(Braking time)	0.00: Disable; 0.01 to 30.00 s	ŏ	1 ŏ	0.00	ŏ	Τč
- 12	Starting Frequency 4	0.0 to 60.0 Hz	Ŏ	Ŏ	0.5	Ŏ	ŤČ
- 13	Load Selection/	0 : Variable torque load	×	0	1	0	C
	Auto Torque Boost/	1 : Constant torque load					
	Auto Energy Saving Operation 4	2 : Auto-torque boost					
		 3 :Auto-energy saving operation (Variable torque load during ACC/DEC) 4 : Auto-energy saving operation (Constant torque load during ACC/DEC) 					
		5 : Auto-energy saving operation (Auto-torque boost during ACC/DEC)					
- 14	Drive Control Selection 4	0 : V/f control with slip compensation inactive	×	0	0	0	C
		1 : Dynamic torque vector control					
		2 : V/f control with slip compensation active					
15	Matan (Na af palae)	6 : Vector control with speed sensor		0100	4		
- <u>15</u> - 15	Motor 4 (No. of poles) (Rated capacity)	2 to 22 poles 0.01 to 1000 kW (when r39 = 0, 2, 3 or 4)	X		4		
10	(Hated capacity)	0.01 to 1000 HP (when r39 = 1)			Ŭ		
- 17	(Rated current)	0.00 to 2000 A	×	△1△2	*6	0	C
- 18	(Auto-tuning)	0 : Disable	×	×	0	0	
		1 : Tune while the motor stops. (%R1, %X and rated slip frequency) 2 : Tune while the motor is rotating under V/f control (%R1, %X, rated slip frequency, no-load current,					
		magnetic saturation factors 1 to 5, and magnetic saturation extension factors "a" to "c")					
		3 : Tune while the motor is rotating under vector control (%R1, %X, rated slip frequency, no-load current, magnetic saturation factors 1 to 5, and magnetic saturation extension factors "a" to "c." Available when the vector control is enabled.)					
-20	(No-load current)	0.00 to 2000 A	×		*6		t c
-21	(%R1)	0.00% to 50.00%	0	△1△2	*6	0	C
-22	(%X)	0.00% to 50.00%	0	$\triangle 1 \triangle 2$	*6	0	C
-23	(Slip compensation gain for driving)	0.0% to 200.0%	0		100.0	0	
- <u>69</u> - 56	(Slip compensation response time) (Slip compensation gain for braking)	0.01 to 10.00 s 0.0% to 200.0%		$ 0 \rangle$	0.12		
- 26	(Rated slip frequency)		×		*6	ŏ	Fč
-27	(Iron loss factor 1)	0.00% to 20.00%	0	$\triangle 1 \triangle 2$	*6	Ŏ	Č
-28	(Iron loss factor 2)	0.00% to 20.00%	0	△1△2		0	C
- 20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 27 - 28 - 29 - 29 - 30 - 31	(Iron loss factor 3)	0.00% to 20.00%	0		0.00	0	
- 30	(Magnetic saturation factor 1)			△1△2 △1△2	*6 *6	0	
- <u>3 7</u> - 32	(Magnetic saturation factor 2) (Magnetic saturation factor 3)	0.0% to 300.0%	$\stackrel{\circ}{\vdash}$	$\triangle 1 \triangle 2$		$\left \begin{array}{c} \\ \\ \\ \end{array} \right $	Fe
- 33	(Magnetic saturation factor 3) (Magnetic saturation factor 4)	0.0% to 300.0%	-ŏ-	$\triangle 1 \triangle 2$	*6	Hŏ	fč
- 34	(Magnetic saturation factor 5)	0.0% to 300.0%	ŏ	$\triangle 1 \triangle 2$	*6	Ō	ŤČ
- 33 - 34 - 35	(Magnetic saturation extension factor "a")	0.0% to 300.0%	Ō	△1△2	*6	Ō	Č
- 36 -	(Magnetic saturation extension factor "b")	0.0% to 300.0%	0	$\triangle 1 \triangle 2$		0	
-37	(Magnetic saturation extension factor "c")	0.0% to 300.0%			*6 0	0	
- 33	Motor 4 Selection	0 : Motor characteristics 0 (Fuji standard motors, 8-series) 1 : Motor characteristics 1 (HP rating motors)	^	△1△2	0		
		2 : Motor characteristics 2 (Fuji motors exclusively designed for vector control)					
		3 : Motor characteristics 3 (Fuji standard motors, 6-series)					
		4 : Other motors					
- 40	Slip Compensation 4 (Operating conditions)	0 : Enable during ACC/DEC and at base frequency or above	$ \times$		0	$ \circ $	$ \times$
		1 : Disable during ACC/DEC and enable at base frequency or above					
		2 : Enable during ACC/DEC and disable at base frequency or above 3 : Disable during ACC/DEC and at base frequency or above					
41	Output Current Fluctuation Damping Gain for Motor 4	0.00 to 0.40	0	0	0.20	0	×
42	Motor/Parameter Switching 4 (Mode selection)	0 : Motor (Switch to the 4th motor)	X	Ŏ	0	Ŏ	C
		1 : Parameter (Switch to particular r codes)	-				
43	Speed Control 4 (Speed command filter)	0.000 to 5.000 s			0	X	
- 44 . ur	(Speed detection filter) P (Gain)	0.000 to 0.100 s 0.1 to 200.0 times	0		0	X	
- 44 - 45 - 46 - 48	I (Integral time)	0.001 to 1.000 s			0	X	
- 4 <u>8</u>	(Output filter)	0.000 to 0.100 s	Ő	ŏ	0	X	C
-51		0 to 9999 (The cumulative run time can be modified or reset in units of 10 hours.)	×	×	-	0	Č
-52	Startup Counter for Motor 4	Indication of cumulative startup count 0000 to FFFF (hex.)	0	X	-	0	С
-53	Motor 4 (%X correction factor 1)	0% to 300%	0		100	0	
-54	(%X correction factor 2)	0% to 300% 0.00 to 2000 A	O X		100	O X	
00					*6		
-55 -58	(Torque current under vector control) (Induced voltage factor under vector control)	50 to 100	X	$\triangle 1 \triangle 2$		X	LC

*3 The motor rated current is automatically set. See Table 5.2 (function code PO3).
 *4 5.0s for inverters with a capacity of 22 kW or below; 10.0s for those with 30 kW or above.
 *6 The motor constant is automatically set, depending upon the inverter's capacity. See Table 5.2.
 *Conta change, reflection and strages X: Not available : After changing data with using Skeys, execute and save data by pressing key.
 *Conta change, reflection and strages : After changing data with using keys.

•J codes: Application Functions 1

0.1	Net	Dete esti	Change wher	Data	Default	Drive of	control
Code	Name	Data setting range	running	copying	setting	V/f	Vecto
JO 1	PID Control (Mode selection)	0 : Disable	X	0	0	0	0
		1 : Enable (Process control, normal operation)			Ŭ		Ĭ
		2 : Enable (Process control, inverse operation)					
		3 : Enable (Dancer control)					
302	(Demote commond C)()	0 : / keys on keypad	×		0		\mathbf{b}
oue	(Remote command SV)		^		0		
		1 : PID process command 1 (Analog input terminals [12], [C1], and [V2])					
		3 : UP/DOWN					
		4 : Command via communications link					
J03		0.000 to 30.000 times	0	0	0.100	0	
JO4		0.0 to 3600.0 s	0	0	0.0	0	0
JOS	D (Differential time)		0	0	0.00	0	0
J06	(Feedback filter)	0.0 to 900.0 s	0	0	0.5	0	
J08 (Pressurization starting frequency)	0.0 to 500.0 Hz			0.0	0	
J09 🗎	(Pressurizing time)		0	0	0	0	0
J 10	(Anti reset windup)	0% to 200%		$\overline{0}$	200	0	$\left \right\rangle$
JII	(Select alarm output)	0 : Absolute-value alarm	Ō	Ō	0	Ō	Ō
	(coloci alanni output)	1 : Absolute-value alarm (with Hold)				~	
		2 : Absolute-value alarm (with Latch)					
		3 : Absolute-value alarm (with Hold and Latch)					
		4 : Deviation alarm					
		5 : Deviation alarm (with Hold)					
		6 : Deviation alarm (with Latch)					
		7 : Deviation alarm (with Hold and Latch)					
512	(Upper level alarm (AH))	-100% to 100%	0		100	0	
J 13	(Lower level alarm (AL))	-100% to 100%	0	0	0	0	0
J 15	(Stop frequency for slow flowrate)	0.0: Disable; 1.0 to 500.0 Hz	0	0	0.0	0	0
J 15	(Slow flowrate level stop latency)	0 to 60 s	0	0	30	0	0
רו ט	(Starting frequency)		0	0	0.0	0	0
J 18		-150% to 150%; 999: Depends on setting of F15	0	0	999	0	0
J 19		-150% to 150%; 999: Depends on setting of F16	0	0	999	0	0
	Dew Condensation Prevention (Duty)			0	1	0	0
355	Commercial Power Switching	0 : Keep inverter operation (Stop due to alarm)	X	0	0	0	
	Sequence	1 : Automatically switch to commercial-power operation					
JS8	PID Control (Speed command filter)	0.00 to 5.00 s			0.10	$ $ \circ	
JS7	(Dancer reference position)	-100% to 0% to 100%	0	0	0	0	0
J58	(Detection width of dancer position deviation)	0: Disable switching PID constant		0	0	0	$\left \right\rangle$
	· · · · · · · · · · · · · · · · · · ·	1% to 100% (Manually set value)					
J59	P (Gain) 2	0.000 to 30.000 times	0	0	0.100	0	0
J60	I (Integral time) 2	0.0 to 3600.0 s	ΤÕ	ΤÕ	0.0	Ō	Ō
J6 I	D (Differential time) 3		Τŏ	Ιŏ	0.00	ŏ	ĬŎ
J62	(PID control block selection)		X	ŏ	0	Ŏ	Ŏ
000		bit 0 : PID output characteristics			Ŭ		~
		0: Plus (add), 1: Minus (subtract)					
		bit 1: Select compensation factor of output ratio					
		0 = Ratio (relative to the main setting)					
		1 = Speed command (relative to maximum frequency)			100		
	Braking Signal (Brake-OFF current)	0% to 300%			100		
J69 J69	(Brake-OFF frequency/speed)			0	1.0	0	0
<u>170</u>	(Brake-OFF timer)	0.0 to 5.0 s	0	0	1.0	0	
ורט	(Brake-ON frequency/speed)	0.0 to 25.0 Hz	0	0	1.0	0	0
ן צרט	(Brake-ON timer)	0.0 to 5.0 s	0	0	1.0	0	0
					100		
J95	(Brake-OFF torque)	0% to 300%	0	0	100		
J95 J98	(Brake-OFF torque) (Speed selection)			$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	0	$\overline{}$	10

Od codes: Application Functions 2

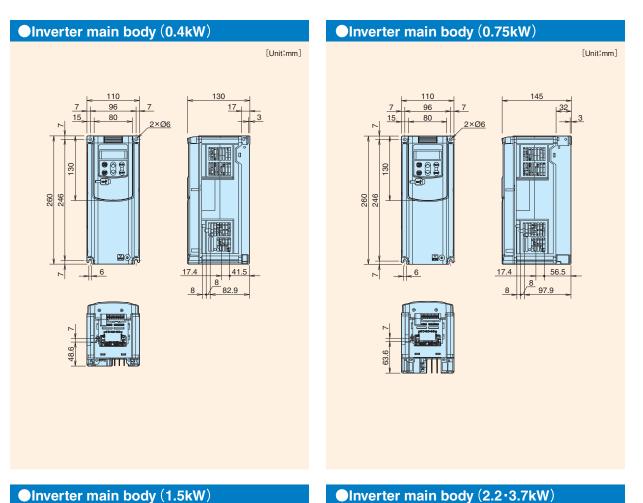
h

Code	Name	Data patting young	Change when	Data	Default	Drive control	
	Name	Data setting range			setting	V/f	Vector
80 1 802 803 804 805	Speed control 1 (Speed command filter)	0.000 to 5.000 s	0	0	0.020	\times	0
- 302	(Speed detection filter)	0.000 to 0.100 s	0	0	0.005	\times	0
903		0.1 to 200.0 times	0	0	10.0	\times	0
804	I (Integral time)	0.001 to 1.000 s	0	0	0.100	\times	0
306	(Output filter)	0.000 to 0.100 s	0	0	0.002	\times	0
- 205	Speed control (Jogging)	0.000 to 5.000 s	0	0	0.020	\times	0
d 10 d 11 d 12 d 13	(Speed command filter)	0.000 to 0.100 s	0		0.005	\times	0
d 1 1	(Speed detection filter)	0.1 to 200.0 times	0	0	10.0	\times	0
- d 12	P (Gain)	0.001 to 1.000 s	0	0	0.100	\times	0
d 13	I (Integral time)	0.000 to 0.100 s	0	0	0.002	\times	0
d 14	Feedback Input	0 : Pulse train sign/Pulse train input	×	0	2	\times	0
	(Output filter)	1 : Forward rotation pulse/Reverse rotation pulse					
	(Pulse input property)	2 : A/B phase with 90 degree phase shift					
d 15 d 16 d 17	(Encoder pulse resolution)	20 to 60000	\times		1024	\times	$ $ \bigcirc
d 16	(Pulse count factor 1)	1 to 9999	×		1	\times	$ $ \circ
d 17	(Pulse count factor 2)	1 to 9999	×	0	1	\times	0
1.56	Speed Agreement/PG Error (Hysteresis width)	0.0% to 50.0%	0	0	10.0	\times	0
1 56	(Detection timer)	0.00 to 10.00 s	0		0.50	\times	0
623	PG Error Processing	0 : Continue to run	×	0	2	\times	0
		1 : Stop running with alarm 1					
		2 : Stop running with alarm 2					
824	Zero Speed Control	0 : Not permit at startup	×	0	0	\times	0
		1 : Permit at startup					
952	ASR Switching Time	0.000 to 1.000 s	0	0	0.000	\times	Ó

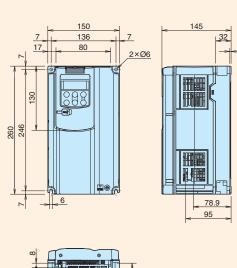
I

I codes: Application Functions 2

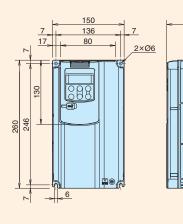
Code	Neme	Data setting range	Change when	Data	Default	Drive control	
Code	Name		running	copying	setting	V/f	Vector
d5 1	Reserved	0 to 500	X	0	10	0	0
452	Reserved	0 to 500	X	0	10	0	0
853	Reserved	0 to 500	×	0	10	0	0
854	Reserved	0 to 500	X	0	10	0	0
655	Reserved	0 : Enable compensation	X	0	0	0	0
		1 : Disable compensation					
859	Command (Pulse train input)	0 : Pulse train sign/Pulse train input	X	0	0	0	0
	(Pulse input property)	1 : Forward rotation pulse/Reverse rotation pulse					
		2 : A/B phase with 90 degree phase shift					
d8 I	(Filter time constant)	0.000 to 5.000 s	0	0	0.005	0	0
86 1 862 863	(Pulse count factor 1)	1 to 9999	×	Ó	1	0	0
863	(Pulse count factor 2)	1 to 9999	×	Ó	1	Ó	Ó

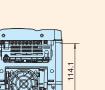

Oy codes: LINK Functions

Code	Name	Data setting range			Default		
110.1	DO 405 O		$\frac{running}{\times}$	copying	setting	V/I	
<u>90 1</u> 902	RS-485 Communication 1 (Station address) (Communications error processing)	1 to 255 0 : Immediately trip with alarm Er8	$\hat{\mathbf{O}}$		0	$\overline{0}$	
JUC		1 : Trip with alarm er8 after running for the period specified by timer $\mathcal{E}r8$ 2 : Retry during the period specified by timer y03. If the retry fails,					
		trip with alarm $\frac{\mathcal{E} - \mathcal{B}}{\mathcal{B}}$. If it succeeds, continue to run. 3 : Continue to run					
903	(Timer)	0.0 to 60.0 s	0	0	2.0	0	0
<u>903</u> 904	(Baud rate)	0 : 2400 bps	0	0	3	0	0
		1 : 4800 bps					
		2:9600 bps					
		3 : 19200 bps 4 : 38400 bps					
905	(Data length)	0 : 8 bits	0	0	0	0	0
		1 : 7 bits					
906	(Parity bits check)	0 : None (2 stop bits)	0	0	0	0	0
		1 : Even parity (1 stop bit) 2 : Odd parity (1 stop bit)					
		3 : None (1 stop bit)					
907	(Stop bits)	0 : 2 bits	0	0	0	0	0
		1:1bit					
908	(No-response error detection time)	0 : No detection; 1 to 60 s	0	0	0	0	0
909 970	(Response interval)	0.00 to 1.00 s	0	0	0.01	0	0
9 ID	(Protocol selection)	0 : Modbus RTU protocol			1		
		1 : FRENIC Loader protocol (SX protocol) 2 : Fuji general-purpose inverter protocol					
911	RS-485 Communication 2 (Station address)	1 to 255	X	0	1	0	0
912	(Communications error processing)	0 : Immediately trip with alarm $\mathcal{E}_{\mathcal{P}}^{\mathcal{P}}$	0	Ŏ	0	Ŏ	Ŏ
		1 : Trip with alarm erp after running for the period specified by timer $\mathcal{E}_{\Gamma}\mathcal{P}$					
		2 : Retry during the period specified by timer $\mathcal{E}_{\mathcal{F}} \mathcal{P}$. If the retry fails,					
		trip with alarm erp. If it succeeds, continue to run. 3 : Continue to run					
9 13	(Timer)	0.0 to 60.0 s	0	0	2.0	0	0
<u>913</u> 914	(Baud rate)	0 : 2400 bps	0	0	3	0	0
		1 : 4800 bps					
		2 : 9600 bps 3 : 19200 bps					
		4 : 38400 bps					
<i>91</i> 5	(Data length)	0 : 8 bits	0	0	0	0	0
9 16	(Parity bits check)	1 : 7 bits 0 : None (2 stop bits)	0	0	0	0	0
5 10	(Fanty bits check)	1 : Even parity (1 stop bit)			0		\cup
		2 : Odd parity (1 stop bit)					
		3 : None (1 stop bit)					
רו צ	(Stop bits)	0 : 2 bits 1 : 1 bit	0	0	0	0	0
9 18	(No-response error detection time)	0 : No detection;	0	0	0	0	0
		1 to 60 s					
5 19	(Response interval)	0.00 to 1.00 s			0.01	\bigcirc	$\overline{\bigcirc}$
920	(Protocol selection)	0 : Modbus RTU protocol 2 : Fuji general-purpose inverter protocol		0	0	0	0
997	Communication Data Storage Selection	0 : Save into nonvolatile storage (Rewritable times limited)	0	0	0	0	0
		1 : Write into temporary storage (Rewritable times unlimited)					
		2 : Save all data from temporary storage to nonvolatile one(After saving data, the data automatically returns to "1.")			-		
998	Bus Link Function (Mode selection)	Frequency command Run command 0 : Follow H30 data Follow H30 data	0	0	0	0	0
		1 : Via field bus option Follow H30 data					
		2 : Follow H30 data Via field bus option					
		3 : Via field bus option Via field bus option					
999	Loader Link Function (Mode selection)	Frequency command Run command 0 : Follow H30 and y98 data Follow H30 and y98 data	0	×	0	0	0
		1 : Via RS-485 link Follow H30 and y98 data H30 and y98 data (FRENIC Loader)					
		2 : Follow H30 and y98 data Via RS-485 link (FRENIC Loader)					
		3 : Via RS-485 link Via RS-485 link(FRENIC Loader)					


<Data change, reflection and strage> X: Not available : After changing data with using Skeys, execute and save data by pressing key, After changing and executing data with using Skeys, save the data by pressing key.

 \square


External Dimensions(Basic Type, EMC Filter Built-in Type)



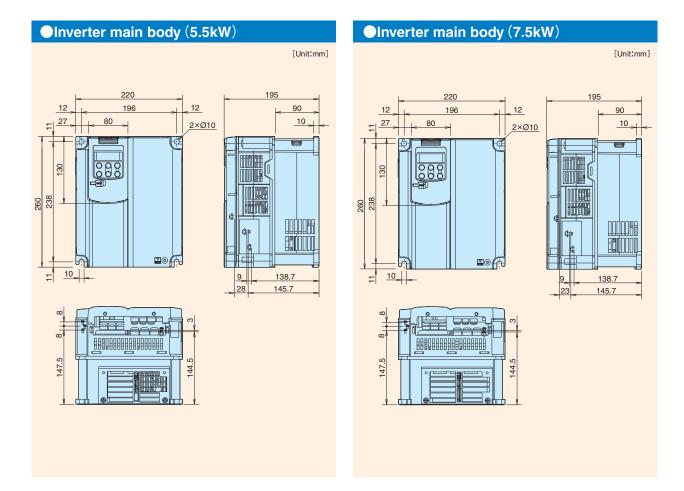
[Unit:mm]

97.9

[Unit:mm]

145

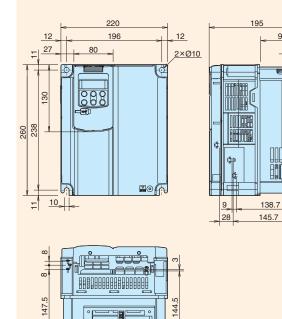
32


BI

78.9

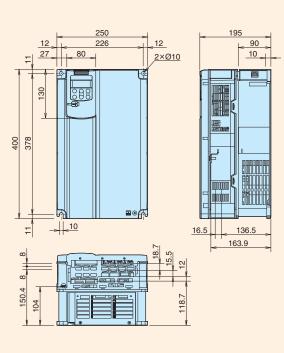
95

3


Inverter main body (11kW)

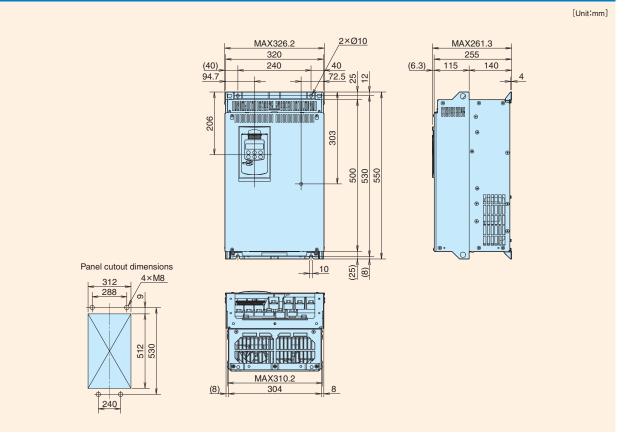
[Unit:mm]

90

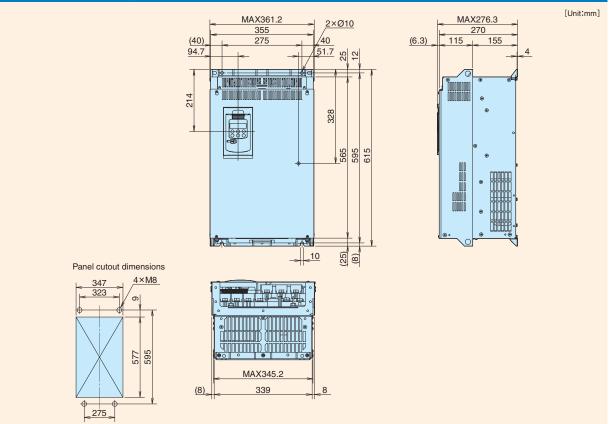

Ň

10

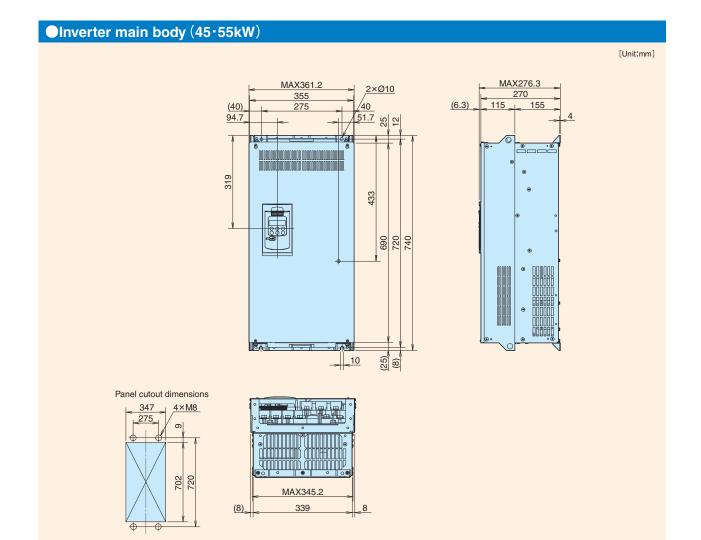
OInverter main body (15.18.5.22kW)


[Unit:mm]

Γ


External Dimensions(Basic Type, EMC Filter Built-in Type)

Inverter main body (30kW)


Inverter main body (37kW)

F

Ĩ

OTouch Panel

128.5

(80) (14.615) 18.2 80 58 4.5 2<u>×М</u>3 13.7 0.5 Đ] 15.08 Panel cutout 23 8.17 BL (128.5) 00 104.6 0 00 \cap ø \odot r\$ 2× ø 4 (9.5) 6 Rear view

4 11.68 16.98

(53.8)

[Unit:mm]

(10.5)

104.6

External Dimension

* The inverter main body and the keypad are subject to change due to development.

115.24

ſ

Warranty

NOTES

	Driving a 400V general-purpose motor	When driving a 400V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.		
When running	Torque characteristics and temperature rise	When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally power developing fan.		
general-purpose motor	Vibration	When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2-pole motor at 60Hz or more may cause abnormal vibration. * Study use of tier coupling or dampening rubber. * It is also recommended to use the inverter jump frequency control to avoid resonance points.		
	Noise	When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60Hz or more can also result in more noise.		
	High-speed motors	When driving a high-speed motor while setting the frequency higher than 120Hz, test the combination with another motor to confirm the safety of high-speed motors.		
	Explosion-proof motors	When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.		
	Submersible motors and pumps	These motors have a larger rated current than general-purpose motors. Select an inverter whose rated output current is greater than that of the motor. These motors differ from general-purpose motors in thermal characteristics. Set a low value in the thermal time constant of the motor when setting the electronic thermal		
When running special motors	Brake motors	For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur. Do not use inverters for driving motors equipped with series-connected brakes.		
	Geared motors	If the power transmission mechanism uses an oil-lubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.		
	Synchronous motors	It is necessary to use software suitable for this motor type. Contact Fuji for details.		
	Single-phase motors	Single-phase motors are not suitable for inverter-driven variable speed operation. Use three-phase motors. * Even if a single-phase power supply is available, use a three-phase motor as the inverter provides three-phase output.		
Environmental conditions linstallation location between the installation location with an ambient temperature range of -10 to +50°C. The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as me Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.				
	Installing a molded case circuit breaker (MCCB)	Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.		
	Installing a magnetic contactor (MC) in the output (secondary) circuit	If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.		
	Installing a magnetic contactor (MC) in the input (primary) circuit	Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.		
Combination with	Protecting the motor	The electronic thermal facility of the inverter can protect the motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor. If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wining stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).		
peripheral devices	Discontinuance of power- factor correcting capacitor	Do not mount power factor correcting capacitors in the inverter (primary) circuit. (Use the DC REACTOR to improve the inverter power factor.) Do not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.		
	Discontinuance of surge killer	Do not mount surge killers in the inverter output (secondary) circuit.		
	Reducing noise	Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met. Refer to "Inverter design technical document (MHT221)" for details.		
	Measures against surge currents	If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase- advancing capacitor in the power system. We recommend connecting a DC REACTOR to the inverter.		
	Megger test	When checking the insulation resistance of the inverter, use a 500V megger and follow the instructions contained in the Instruction Manual.		
	Wiring distance of control circuit	When performing remote operation, use the twisted shield wire and limit the distance between the inverter and the control box to 20m.		
Wiring	Wiring length between inverter and motor	If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (high-frequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50m. If this length must be exceeded, lower the carrier frequency or mount an output circuit lifter (OFL).		
g	Wiring size	Select cables with a sufficient capacity by referring to the current value or recommended wire size.		
	Wiring type	Do not use multicore cables that are normally used for connecting several inverters and motors.		
	Grounding	Securely ground the inverter using the grounding terminal.		
Selecting inverter capacity	Driving general-purpose motor	Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.		
capacity	Driving special motors	Select an inverter that meets the following condition : Inverter rated current > Motor rated current.		
Transportation and	storage	When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.		

To all our customers who purchase Fuji Electric FA Components & Systems' products:

Please take the following items into consideration when placing your order.

When requesting an estimate and placing your orders for the products included in these materials, please be aware that any items such as specifications which are not specifically mentioned in the contract, catalog, specifications or other materials will be as mentioned below.

In addition, the products included in these materials are limited in the use they are put to and the place where they can be used, etc., and may require periodic inspection. Please confirm these points with your sales representative or directly with this company. Furthermore, regarding purchased products and delivered products, we request that you take adequate consideration of the necessity of rapid receiving inspections and of product management and maintenance even before receiving your products.

1. Free of Charge Warranty Period and Warranty Range

1-1 Free of charge warranty period

- The product warranty period is "1 year from the date of purchase" or 24 months from the manufacturing date imprinted on the name place, whichever date is earlier.
 However, in cases where the use environment, conditions of use, use frequency and times used, etc., have an effect on product life, this warranty period may not apply.
- (3) Furthermore, the warranty period for parts restored by Fuji Electric's Service Department is "6 months from the date that repairs are completed."

1-2 Warranty range

- (1) In the event that breakdown occurs during the product's warranty period which is the responsibility of Fuji Electric, Fuji Electric will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not applicable. apply.
 - The breakdown was caused by inappropriate conditions, environment, handling or methods, etc. which are not specified in the catalog, operation manual, specifications or of
 - relevant documents. 2) The breakdown was caused by the product other than the purchased or delivered Fuji's product. 3) The breakdown was caused by the product other than Fuji's product, such as the customer's

 - equipment or software design, etc.
 Concerning the Fuji's programmable products, the breakdown was caused by a program other than a program supplied by this company, or the results from using such a program.
 The breakdown was caused by modifications or repairs affected by a party other than Fuji Electric.
 - Electric
 - Electric. 6) The breakdown was caused by improper maintenance or replacement using consumables, etc. specified in the operation manual or catalog, etc. 7) The breakdown was caused by a chemical or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered. 8) The product was not used in the manner the product was originally intended to be used. 9) The breakdown was caused by a reason which is not this company's responsibility, such as lightning or other disaster.
- (2) Furthermore, the warranty specified herein shall be limited to the purchased or delivered product alone.
 (3) The upper limit for the warranty range shall be as specified in item (1) above and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from breakdown of the purchased or delivered product shall be excluded from coverage by this warranty.

1-3. Trouble diagnosis

As a rule, the customer is requested to carry out a preliminary trouble diagnosis. However, at the customer's request, this company or its service network can perform the trouble diagnosis on a chargeable basis. In this case, the customer is asked to assume the burden for charges levied in accordance with this company's fee schedule.

2. Exclusion of Liability for Loss of Opportunity, etc.

Regardless of whether a breakdown occurs during or after the free of charge warranty period, this company shall not be liable for any loss of opportunity, loss of profits, or damages arising from special circumstances, secondary damages, accident compensation to another company, or damages to products other than this company's products, whether foreseen or not by this company, which this company is not be responsible for causing.

3. Repair Period after Production Stop, Spare Parts Supply Period (Holding Period)

Repair Period arter Production Stop, Spare Parts Supply Period (Holding Period) Concerning models (products) which have gone out of production, this company will perform repairs for a period of 7 years after production stop, counting from the month and year when the production stop occurs. In addition, we will continue to supply the spare parts required for repairs for a period of 7 years, counting from the month and year when the production stop occurs. However, if it is estimated that the life cycle of certain electronic and other parts is short and it will be difficult to procure or produce those parts, there may be cases where it is difficult to provide repairs or supply spare parts even within this 7-year period. For details, please confirm at our company's business office or our service office

4. Transfer Rights

In the case of standard products which do not include settings or adjustments in an application program, the products shall be transported to and transferred to the customer and this company shall not be responsible for local adjustments or trial operation.

5. Service Contents

The cost of purchased and delivered products does not include the cost of dispatching engineers or service costs. Depending on the request, these can be discussed separately

6. Applicable Scope of Service

Above contents shall be assumed to apply to transactions and use of the country where you purchased the products. Consult the local supplier or Fuji for the detail separately.

Variation

•The rich lineup of the active Fuji inverter family

Applications	Series Name (Catalog No.)	Features			
	FRENIC-MEGA (MEH • • •)	 High-performance, multi-functional inverter (HD (High Duty) spec: Three-phase 200V: 0.4 to 90kW, Three-phase 400V: 0.4 to 630kW) (LD (Low Duty) spec: Three-phase 200V: 7.5 to 110kW, Three-phase 400V: 7.5 to 710kW) Loaded with vector control which is the peak of general purpose inverters. Prepared three types; the basic type, EMC filter built-in type, and type which complies with the guideline supervised by the Ministry of Land, Infrastructure and Transport. Maintainability is further improved with built-in USB port. The short-time acceleration and deceleration become enabled with achieving better rating of overload ratings at HD spec: 200% for 3 sec and 150% for 1 min and at LD spec: 120% for 1 min. 			
	FRENIC5000G11S (MEH403 for JE) (MEH413 for EN)	High-performance, multi-functional inverter multi-functional Capacity range expanded (Three-phase 200V: 0.2 to 90kW, Three-phase 400V: 0.4 to 630kW) • Fuji's original dynamic torque vector control system delivers a starting torque of 200% at 0.5Hz. • Fuji's original dynamic torque vector control system delivers a starting torque of 200% at 0.5Hz. • These inverters are packed with a full range of convenient functions, beginning with an auto tuning function. • Compact, fully enclosed (22kW and below).			
	FRENIC5000P11S (MEH403)	Fan, pump inverter Capacity range expanded (Three-phase 200V: 5.5 to110kW, Three-phase 400V: 5.5 to 710kW) • Suitable for fans and pumps. • The built-in automatic energy-saving function makes energy saving operation easy. • An interactive keypad is standard-equipped for ease of operation.			
General Industrial	FRENIC-Multi (MEH652 for JE) (MEH653 for EN)	 High performance, compact inverter (Three-phase 200V: 0.1 to 15kW, Single-phase 200V: 0.1 to 2.2kW, Three-phase 400V: 0.4 to 15kW) The inverter featuring environment-friendly and long life design (10 years) complies with RoHS Directives (products manufactured beginning in the autumn of 2005). With expanded capacity range, abundant model variation, and simple and thorough maintenance, the Multi is usable for a wide range of applications. Equipped with the functions optimum for the operations specific to vertical and horizontal conveyance, such as hit-and-stop control, brake signal, torque limit, and current limit. 			
equipment	FRENIC-Eco (MEH442)	 Fan, pump inverter (for variable torque load) (Three-phase 200V: 0.75 to 110kW, Three-phase 400V: 0.75 to 560kW) Developed exclusively for controlling variable torque load like fans and pumps. Full of new functions such as auto energy saving, PID control, life warning, and switching sequence to the commercial power supply. Ideal for air conditioners, fans, pumps, etc. which were difficult to use with conventional general-purpose inverters because of cost or functions. 			
	FRENIC-Mini (MEH441 for JE) (MEH451 for EN)	 Compact inverter (Three-phase 200V: 0.1 to 3.7kW, Three-phase 400V: 0.4 to 3.7kW, Single-phase 200V: 0.1 to 2.2kW, Single-phase 100V: 0.1 to 0.75kW) A frequency setting device is standard-equipped, making operation simple. Loaded with auto torque boost, current limiting, and slip compensation functions, all of which are ideal for controlling traverse conveyors. Loaded with the functions for auto energy saving operation and PID control, which are ideal for controlling fans and pumps.			
	FRENIC5000VG7S (MEH405)	High performance, vector control inverter Capacity range expanded (Three-phase 200V: 0.75 to 90kW, Three-phase 400V: 3.7 to 630kW) • A high precision inverter with rapid control response and stable torque characteristics. • Abundant functions and a full range of options make this inverter ideal for a broad range of general industrial systems. • The auto tuning function makes vector control operation possible even for general-purpose			
	FRENIC5000MG5	motors. Inverter with the power supply regeneration function (Three-phase 200V: 3.7 to 45kW) A separate converter is used, and up to 2 drive units can be connected to a single converter unit. The power regeneration function is standard-equipped in the converter unit. These inverters can be used for general-purpose motors.			
High frequency operation	FRENIC5000H11S	 High frequency inverter (Three-phase 200V: 2.2 to 18.5kW) Fuji's original sine wave PWM control system delivers stable operation from the low speed range to the high speed range. Capable of handling output frequencies from 1 to 1667Hz. The desired V/f pattern can be set and polygonal line frequency can be set to match the motor characteristics. 			
Controlling machine tool	FRENIC5000MS5 (MEH391)	 Machine tool spindle drive system (Three-phase 200V: 0.75 to 45kW) The separated converter allows you to configure a multi-axis system. Free combinations are made possible such as torque vector/high performance vector control and dynamic braking/power regeneration. Abundant option functions enable multitasking machining with a machine tool. 			
 Use the contents of this catalog only for selecting product types and models. When using a product, read the Instruction Manual beforehand to use the product correctly. Products introduced in this catalog have not been designed or manufactured for such applications in a system or equipment that will affect human bodies or lives. Customers, who want to use the products introduced in this catalog for special systems or devices such as for atomic-energy control, aerospace use, medical use, and traffic control, are requested to consult the Fuji's Sales Division. Customers are requested to prepare safety measures when they apply the products introduced in this catalog to such systems or facilities that will affect human lives or cause severe damage to property if the products become faulty. 					

ſ

When running general-purpose motors

- Driving a 400V general-purpose motor When driving a 400V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.
- Torque characteristics and temperature rise When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan.
- Vibration

When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2-pole motor at 60Hz or more may cause abnormal vibration.

- * Study use of tier coupling or dampening rubber.
- * It is also recommended to use the inverter jump frequency control to avoid resonance points.
- Noise
- When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60Hz or more can also result in more noise.

When running special motors

High-speed motors

When driving a high-speed motor while setting the frequency higher than 120Hz, test the combination with another motor to confirm the safety of high-speed motors.

Explosion-proof motors

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

 Submersible motors and pumps These motors have a larger rated current than general-purpose motors. Select an inverter whose rated output current is greater than that of the motor.

These motors differ from general-purpose motors in thermal characteristics. Set a low value in the thermal time constant of the motor when setting the electronic thermal facility.

Brake motors

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.

Do not use inverters for driving motors equipped with series-connected brakes.

Geared motors

If the power transmission mechanism uses an oil-

lubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

- Synchronous motors
 It is necessary to use software suitable for this
- motor type. Contact Fuji for details. • Single-phase motors
- Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors.

* Even if a single-phase power supply is available, use a three-phase motor as the inverter provides three-phase output.

Environmental conditions

Installation location

Use the inverter in a location with an ambient temperature range of -10 to 50°C. The inverter and braking resistor surfaces become

hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

Combination with peripheral devices

• Installing a molded case circuit breaker (MCCB)

Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.

- Installing a magnetic contactor (MC) in the output (secondary) circuit If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.
- Installing a magnetic contactor (MC)
 in the input (primary) circuit

Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

Protecting the motor

The electronic thermal facility of the inverter can protect the motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.

If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

 Discontinuance of power-factor correcting capacitor Do not mount power factor correcting capacitors in the inverter (primary) circuit. (Use the DC REACTOR to improve the inverter power factor.) Do not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.

Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met. Refer to "Inverter design technical document (MHT221)" for details.

• Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.

We recommend connecting a DC REACTOR to the inverter.

Megger test

When checking the insulation resistance of the inverter, use a 500V megger and follow the instructions contained in the Instruction Manual.

Wiring

- Wiring distance of control circuit When performing remote operation, use the twisted shield wire and limit the distance between the inverter and the control box to 20m.
- Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (high-frequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50m. If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL).
- Wiring size
 - Select cables with a sufficient capacity by referring to the current value or recommended wire size.
- Wiring type Do not use multicore cables that are normally used for connecting several inverters and motors.
- Grounding

Securely ground the inverter using the grounding terminal.

Selecting inverter capacity

• Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

Fuji Electric FA Components & Systems Co., Ltd.

Mitsui Sumitomo Bank Ningyo-cho Bldg., 5-7,Nihonbashi Odemma-cho,Chuo-ku,Tokyo 103-0011,Japan Phone: +81-3-5847-8011 Fax: +81-3-5847-8172

Information in this catalog is subject to change without notice.